Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ta có: BH\(\perp\)AC
CK\(\perp\)AC
Do đó: BH//CK
Ta có: CH\(\perp\)AB
BK\(\perp\)BA
Do đó: CH//BK
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
b: Ta có: BHCKlà hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HK
=>H,M,K thẳng hàng
a, Ta có:
- BH là đường cao của tam giác ABC, nên BH vuông góc với AC.
- CK là đường cao của tam giác ABC, nên CK vuông góc với AB.
- Vì BH và CK đều vuông góc với hai cạnh AB và AC của tam giác ABC, nên BHCK là hình bình hành.
b, Gọi M là trung điểm của BC. Ta cần chứng minh CM, HM và KM thẳng hàng.
- Vì M là trung điểm của BC, nên BM = MC.
- Ta có BHCK là hình bình hành, nên BH = CK.
- Vì BH và CK là đường cao của tam giác ABC, nên BH = 2HM và CK = 2KM.
- Từ đó, ta có BM = MC = HM = KM.
- Vì BM = MC và HM = KM, nên CM, HM và KM thẳng hàng.
Vậy, ta đã chứng minh được CM, HM và KM thẳng hàng.
a: Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/2=6/5=1,2
=>AD=3,6cm; CD=2,4cm
Xét ΔABCcó ED//BC
nên ED/BC=AD/AC
=>ED/4=3,6/6=3/5
=>ED=2,4cm
b: Xét ΔADB và ΔAEC có
góc A chung
góc ABD=góc ACE
=>ΔABD đồng dạng với ΔACE
c: Xét ΔIEB và ΔIDC có
góc IEB=góc IDC
góc EIB=góc DIC
=>ΔIEB đồng dạng với ΔIDC
=>EB/DC=IE/ID
=>IE*DC=EB*ID
a: Xét ΔOAD và ΔOMK có
\(\widehat{OAD}=\widehat{OMK}\)(hai góc so le trong, AD//MK)
\(\widehat{AOD}=\widehat{MOK}\)
Do đó: ΔOAD đồng dạng với ΔOMK
=>\(\dfrac{OA}{OM}=\dfrac{OD}{OK}\)
=>\(OA\cdot OK=OM\cdot OD\)
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{CA}\)
=>\(\dfrac{BD}{5}=\dfrac{CD}{10}\)
=>\(\dfrac{BD}{1}=\dfrac{CD}{2}\)
mà BD+CD=BC=12
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{1}=\dfrac{CD}{2}=\dfrac{BD+CD}{1+2}=\dfrac{12}{3}=4\)
=>\(BD=4\left(cm\right);CD=8\left(cm\right)\)
c: ME//AD
=>\(\widehat{AEK}=\widehat{DAC}\)(hai góc so le trong)(1)
KM//AD
=>\(\widehat{AKE}=\widehat{BAD}\)(hai góc đồng vị)(2)
AD là phân giác của góc BAC
=>\(\widehat{BAD}=\widehat{CAD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{AEK}=\widehat{AKE}\)
=>AE=AK
Xét ΔCAD có EM//AD
nên \(\dfrac{CE}{CA}=\dfrac{CM}{CD}\)
=>\(\dfrac{CE}{CM}=\dfrac{CA}{CD}\)
mà \(\dfrac{CA}{CD}=\dfrac{BA}{BD}\)
nên \(\dfrac{CE}{CM}=\dfrac{BA}{BD}\)
=>\(\dfrac{AB}{BD}=\dfrac{EC}{CM}\)
=>\(\dfrac{AB}{EC}=\dfrac{BD}{CM}\)(ĐPCM)
a: Xét ΔABM có DN//BM
nên DN/BM=AD/AB
hay DN/CM=AD/AB(1)
Xét ΔACM có NE//MC
nên NE/MC=AE/AC(2)
Xét ΔABC có DE//BC
nên AD/AB=AE/AC(3)
Từ (1), (2) và (3) suy ra ND=NE
hay N là trung điểm của DE
=>MN là đường trung bình
b: Xét ΔNMD có \(\widehat{NMD}=\widehat{NDM}\left(=\widehat{DMB}\right)\)
nên ΔNMD cân tại N
Xét ΔMNE có NE=NM
nên ΔMNE cân tại N
Xét ΔMDE có
NM là đường trung tuyến
MN=DE/2
Do đó: ΔMDE vuông tại M
a) Xét ΔABC vuông tại A ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
=> BC = 10 (cm)
Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\) (t/c đường p/g)
=> \(\dfrac{AD}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
=> \(\dfrac{AD}{3}=\dfrac{DC}{5}\)
Áp dụng DTSBN ta có:
\(\dfrac{AD}{3}=\dfrac{DC}{5}=\dfrac{AD+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
=> \(\left\{{}\begin{matrix}\dfrac{AD}{3}=1\Rightarrow AD=3\\\dfrac{DC}{5}=1\Rightarrow DC=5\end{matrix}\right.\)
b) ΔABH và ΔCBA (bạn tự xét nhé) theo trường hợp g-g
=> \(\widehat{BAH}=\widehat{BCA}\) (2 góc tương ứng)
Xét ΔABI và ΔCBD ta có:
\(\widehat{ABI}=\widehat{DBC}\) (BD là đường p/g)
\(\widehat{BAI}=\widehat{BCD}\) (cmt)
=> ΔABI ~ ΔCBD (g-g)
c) Xét ΔABH ta có:
BI là đường p/g (gt)
=> \(\dfrac{IH}{IA}=\dfrac{BH}{AB}\) (t/c đường p/g)
Ta có: \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\) (cm a)
\(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) (ΔABH ~ ΔCBA)
=> đpcm
a) Ta có: \(\widehat{ADB}\) là góc ngoài tại đỉnh D của ΔDBC(DA và DC là hai tia đối nhau)
nên \(\widehat{ADB}=\widehat{DBC}+\widehat{C}\)(định lí góc ngoài của tam giác)
hay \(\widehat{C}=\widehat{ADB}-\widehat{DBC}\)
hay \(\widehat{C}=\widehat{MDB}-\widehat{DBC}\)(1)
Ta có: Đường trung trực của BD cắt AC tại M(gt)
⇔M nằm trên đường trung trực của BD
⇔MB=MD(tính chất đường trung trực của một đoạn thẳng)
Xét ΔMBD có MB=MD(cmt)
nên ΔMBD cân tại M(định nghĩa tam giác cân)
⇒\(\widehat{MBD}=\widehat{MDB}\)(hai góc ở đáy)(2)
Từ (1) và (2) suy ra \(\widehat{C}=\widehat{MBD}-\widehat{ABD}\)(3)
Ta có: \(\widehat{ABD}+\widehat{MBA}=\widehat{MBD}\)(tia BA nằm giữa hai tia BD và BM)
hay \(\widehat{MBA}=\widehat{MBD}-\widehat{ABD}\)(4)
Từ (3) và (4) suy ra \(\widehat{C}=\widehat{MBA}\)
Xét ΔMAB và ΔMBC có
\(\widehat{MBA}=\widehat{MCB}\)(cmt)
\(\widehat{AMB}\) chung
Do đó: ΔMAB∼ΔMBC(g-g)