Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F H
Cô hướng dẫn nhé.
a) Do ABC là tam giác cân nên AE = AF, AC = AB
Lại có \(\Delta AFC\sim\Delta ABH\left(g-g\right)\Rightarrow\frac{AF}{AB}=\frac{AC}{AH}\Rightarrow AF.AH=AB.AC\Rightarrow AE.AH=AC^2\)
b) Câu này đề ko đúng. Cô sửa lại \(\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{4.AD^2}\)
\(AD.BC=AB.CF\left(=\frac{S_{ABC}}{2}\right)\)
Vậy nên \(VP=\frac{AD^2+\frac{BC^2}{4}}{BC^2.AD^2}=\frac{AD^2+\left(\frac{BC}{2}\right)^2}{CF^2AB^2}=\frac{AD^2+BD^2}{CF^2AB^2}=\frac{AB^2}{CF^2.AB^2}=\frac{1}{CF^2}=VT\)
a}\(\frac{AC^2}{AB^2}=\frac{DC.BC}{BD.BC}=\frac{DC}{BD}\Rightarrow\frac{AC^4}{AB^4}=\frac{DC^2}{BD^2}=\frac{CF.AC}{BE.AB}\Rightarrow\frac{AC^3}{AB^3}=\frac{CF}{BE}\)
b}tứ giác AFDE là hình chữ nhật
=>AH=EF
=>AH2=EF2=ED2+FD2
3AH2+BE2+CF2=2AH2+BE2+CF2+ED2+FD2=2AH2+BD2+DC2=AH2+BD2+AH2+DC2=AB2+AC2=BC2
theo dinh ly pita go
Gọi F là điểm đối xứng của CC qua AA
Ta được \(AF=AC=AB\)
\(A,F,C\)thẳng hàng
\(\Rightarrow\Delta BFC\perp B\)
Ta có: \(\Delta ABC\)cân tại A(gt)
\(AD\perp BC\left(gt\right)\)
\(\Rightarrow BD=DC\)
mà \(AF=AC\)
\(\Rightarrow AD\)//\(BF\)mà \(AD=\frac{BF}{2}\)(tính chất đường trung bình)
Áp dụng hệ thức lượng vào \(\Delta BFC\perp B\)đường cao BE ta được:
\(\frac{1}{BE^2}=\frac{1}{BF^2}+\frac{1}{BC^2}\)
\(\Leftrightarrow\frac{1}{BE^2}=\frac{1}{4AD^2}+\frac{1}{BC^2}\)
\(\Leftrightarrow\frac{1}{4k^2}=\frac{1}{4n^2}+\frac{1}{4m^2}\)
\(\Leftrightarrow\frac{1}{k^2}=\frac{1}{n^2}+\frac{1}{m^2}\left(đpcm\right)\)
#Shinobu Cừu