Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D E M N I
a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.
b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng
Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)
Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)
Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)
Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)
Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)
Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)
Từ (6) suy ra ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)
Từ (***) và (****) suy ra đpcm.
c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I
\(\Rightarrow\)^IAC = ^ICA (7)
Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)
Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)
Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.
P/s: Không chắc nha!
a, Xét tam giác ABC, có:
M là trung điểm của AB
N là trung điểm của AC
=> MN là đtb của tam giác ABC
=> MN//BC
=> BMNC là hình thang (MN//BC)
Vì tam giác ABC cân tại A nên góc ABC = góc ACB
=> góc MBC = góc NCB.
Xét hình thang BMNC(MN//BC), có:
góc MBC = góc NCB
=> BMNC là hình thang cân.
b, Xét tam giác ABC, có:
N là trung điểm của AC
H là trung điểm của BC
=> NH là đtb của tam giác ABC
=> NH//AB và NH = 1/2 .AB
Vì M là trung điểm của AB nên AM = 1/2 . AB
Suy ra: AM = NH
Xét tứ giác AMHN, có:
AM = NH
NH//AM (NH//AB)
=> AMHN là hình bình hành (1)
Vì tam giác ABC cân tại A nên AB = AC
mà AM = 1/2 . AB ( M là tđ của AB )
AN = 1/2 . AC ( N là tđ của AC )
Suy ra: AM = AN (2)
Từ (1) và (2) ta suy ra: hình bình hành AMHN là hình thoi.
c,SABC = 1/2 . AH . BC = 1/2 . 4 . 6 = 12 (cm2)
Vì MN là đtb của tam giác ABC nên MN = 1/2 . BC
=> MN = 1/2 . 6 = 3 (cm)
Xét tam giác AHC có:
N là trung điểm của AC
ON // HC ( MN//BC)
=> O là trung điểm của AH
=> AO = 1/2 . AH = 1/2 . 4 = 2 (cm)
SAMN = 1/2 . AO . MN = 1/2 . 2 . 3 = 3 (cm2)
SBMNC = SABC - SAMN = 12 - 3 = 9 (cm2)
d,Vì K là điểm đối xứng của H qua N nên N là tđ của HK
=> HN = 1/2 . HK (3)
Vì AMHN là hình thoi nên HN = AM
mà AM = 1/2 . AB nên HN = 1/2 . AB (4)
Từ(3) và (4) ta suy ra:
HK = AB
Vì AM//NH nên AB//HK
mà HK = AB
nên AKHB là hình bình hành
=> hai đường chéo AH và BK cắt nhau tại tđ của mỗi đường
mà O là trung của AH
nên O là trung điểm của BK
=> BK đi qua O
=> B,O,K thẳng hàng.
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}=3\left(cm\right)\) và MN//BC
b: Xét tứ giác MNCB có MN//BC
nên MNCB là hình thang
mà \(\widehat{NCB}=\widehat{MBC}\)
nên MNCB là hình thang cân