Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HÌNH BẠN TỰ VẼ NHA !!!
a. Tam giác ABC cân tại A => Ab = AC
Xét tam giác ABH và tam giác ACK có :
AB = AC
góc A chung
góc AHB = AKC = 90 độ
=> tam giác ABH = tam giác ACK ( cạnh huyền - góc nhọn )
=> BH = CK
b. Xét tam giác CBK và tam giác BCH có :
BH = CK
BC chung
góc CKB = BHC = 90 độ
=> tam giác CBK = tam giác BCH ( cạnh huyền - cạnh góc vuông )
a)
xét tam giác ABM và tam giác ACM có:
AB=AC(gt)
MB=MC(gt)
B=C(gt)
suy ra tam giác ABM=ACM(c.g.c)
b)
xét 2 tam giác vuông AHC và AKB có:
AB=AC(gt)
A(chung)
suy ra tam giác AHB=AKB(CH-GN)
suy ra AH=AK
AB=AC
BH=AB=AH
CK=AC-AK
từ tất cả nh điều trên suy ra BH=CK
c)
xét tam giác KBC và tma giác HCB có:
CB(chugn)
HB=KC(theo câu b)
B=C(gt)
suy ra tam giác KBC=ACB(c.g.c)
suy ra KBC=HCB suy ra tam giác IBC cân tại I
Tam giác ABC cân tại A
\(\Rightarrow\)AB=AC nên AK+BK=AH+HC
ABC=ACB
C/m tam giác BKC= tam giác CHB(ch-gn)
BKC=CHB(=90 độ)
BC chung
KBC=HCB(cmt)(vì K thuoc AB,h thuoc AC)
Nên BK=HC
\(\Rightarrow\)AB-BK=AC-HC
Nên AK =AH(đpcm)
A B C M D E = =
Vì △ABC cân tại A
=> ABC = ACB
Xét △BDM vuông tại D và △CEM vuông tại E
Có: BM = CM (gt)
DBM = ECM
=> △BDM = △CEM (ch-gn)
=> DM = EM (2 cạnh tương ứng)
Xét △AMD vuông tại D và △AME vuông tại E
Có: DM = ME (cmt)
AM là cạnh chung
=> △AMD = △AME (ch-cgv)
=> AD = AE (2 cạnh tương ứng)
Xét △ADE có AD = AE
=> △ADE cân tại A
=> ADC = (180o - A) : 2 (1)
Vì △ABC cân tại A
=> ABC = (180o - A) : 2 (2)
Từ (1), (2) => ADC = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> DE // BC (dhnb)
A B C K H
a) Xét \(\Delta ABH\)và \(\Delta ACK\)có :
\(\widehat{A}\)Chung
\(AB=AC\) ( vì tam giác ABC cân )
\(\widehat{AHB}=\widehat{AKC}=90^o\) ( GT)
Do đó tam giác ABH = tam giác ACK (cạnh huyền - góc nhọn)
b) Vì tam giác ABH = tam giác ACK ( câu a )
\(\Rightarrow CK=BH\) ( cặp cạnh tương ứng)
Xét tam giác CBK và tam giác BCH ta có :
\(BC:\)Cạnh chung
\(\widehat{BKC}=\widehat{CHB}=90^o\) (GT)
\(BC:\)Cạnh chung
Do đó tam giác CBK = tam giác BCH ( cạnh huyền - cạnh góc vuông)