Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. xét tam giác vuông AHB và tam giác vuông AHC, có:
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
Vậy tam giác vuông AHB = tam giác vuông AHC ( ch.gn )
b. ta có: trong tam giác cân ABC đường cao cũng là đường trung tuyến
=> BH = BC :2 = 10 : 2 =5 cm
Áp dụng định lý pitago vào tam giác vuông ABH
\(AB^2=AH^2+BH^2\)
\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{13^2-5^2}=\sqrt{144}=12cm\)
a) Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H:
AB = AC (\(\Delta ABC\) cân tại A).
\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).
\(\Rightarrow\Delta AHB=\Delta AHC\) (cạnh huyền - góc nhọn).
b) Xét \(\Delta DHC:\)
DI là trung tuyến (I là trung điểm của HC).
DI là đường cao \(\left(DI\perp HC\right).\)
\(\Rightarrow\Delta DHC\) cân tại D.
a) Xét tgiac ABD và EBD có:
+ AB = BE
+ BD chung
+ góc ABD = EBD
=> Tgiac ABD = EBD (c-g-c)
=> đpcm
b) Tgiac ABD = EBD (cmt) => AD = DE (hai cạnh t/ứng)
Xét tgiac ADE có AD = DE => Tgiac ADE cân tại D
=> đpcm
c) AH \(\perp\)BC, DE\(\perp\)BC => AH\(//\)DE
=> góc HAE = AED (2 góc SLT do AH\(//\)DE)
Mà tgiac ADE cân tại D (cmt) => góc AED = DAE
=> góc HAE = DAE
=> AE là tia pgiac góc HAC (đpcm)
d) Xét tgiac ADK và EDC có:
+ góc DAK = DEC = 90o
+ góc ADK = EDC (2 góc đối đỉnh)
+ AD = DE (do tgiac ABD = EBD)
=> Tgiac ADK = EDC (g-c-g)
=> AK = EC và KD = DC (2 cạnh t/ứng)
=> Tgiac KDC cân tại K => Góc DCK = (180o- góc KDC) /2
Tgiac AED cân tại D => góc EAD = (180o- góc ADE) /2
Mà góc ADE = KDC (2 góc đối đỉnh) => góc DCK = EAD
Mà 2 góc này SLT => AE \(//\)KC
=> đpcm
a) Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H:
AB = AC (Tam giác ABC cân tại A).
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).
\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right).\)
b) Xét tam giác ABC cân tại A:
AH là đường cao (AH ⊥ BC).
\(\Rightarrow\) AH là đường trung tuyến (T/c tam giác cân).
\(\Rightarrow\) H là trung điểm BC.
Xét tam giác MBH vuông tại M và tam giác NCH vuông tại N:
BH = CH (H là trung điểm BC).
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).
\(\Rightarrow\Delta MBH=\Delta NCH\left(ch-gn\right).\\ \Rightarrow BM=CN.\)
Ta có: \(AM=AB-BM;AN=AC-CN.\)
Mà \(\left\{{}\begin{matrix}AB=AC\\BM=CN\end{matrix}\right.\) (cmt).
\(\Rightarrow AM=AN.\Rightarrow\Delta AMN\) cân tại A.
c) Xét tam giác AMN cân tại A:
\(\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)
Xét tam giác ABC cân tại A:
\(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}.\)
\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC\left(dhnb\right).\)
Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H:
\(AB=AC\) (\(\Delta ABC\) cân tại A).
\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).
\(\Rightarrow\Delta AHB=\) \(\Delta AHC\left(ch-gn\right).\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}.\)
Xét \(\Delta AMH\) vuông tại M và \(\Delta ANH\) vuông tại N:
\(AHchung.\\ \widehat{MAH}=\widehat{NAH}\left(\widehat{BAH}=\widehat{CAH}\right).\\ \Rightarrow\Delta AMH=\Delta ANH\left(ch-gn\right).\)
Xét \(\Delta AMN:AM=AN\left(\Delta AMH=\Delta ANH\right).\)
\(\Rightarrow\Delta AMN\) cân tại A.
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)
Mà \(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\) (\(\Delta ABC\) cân tại A).
\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC.\)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)(đpcm)
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK
Suy ra: AH=AK
b: Xét ΔKCB vuông tại K và ΔHBC vuông tại H có
BC chung
KB=HC
Do đó: ΔKCB=ΔHBC
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
=>ΔBIC cân tại I
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
c: Ta có: ΔABC cân tại A
mà AI là đường phân giác
nên AI là đường cao
d: Xét ΔABC có AK/AB=AH/AC
nên KH//BC
a/ Xét tam giác AHB và tam giác AHC
Góc AHB=AHC=90 độ
AB=AC(tam giác ABC cân tại A)
Góc B=C (tam giác ABC cân tại A)
=> Tam giác ABH=ACH(ch-gn)
mk nha
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AH chung
HB=HC
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>HB=HC và góc BAH=góc CAH
=>AH là phân giác của góc BAC và H là trung điểm của BC