Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D E = =
Vì △ABC cân tại A
=> ABC = ACB
Xét △BDM vuông tại D và △CEM vuông tại E
Có: BM = CM (gt)
DBM = ECM
=> △BDM = △CEM (ch-gn)
=> DM = EM (2 cạnh tương ứng)
Xét △AMD vuông tại D và △AME vuông tại E
Có: DM = ME (cmt)
AM là cạnh chung
=> △AMD = △AME (ch-cgv)
=> AD = AE (2 cạnh tương ứng)
Xét △ADE có AD = AE
=> △ADE cân tại A
=> ADC = (180o - A) : 2 (1)
Vì △ABC cân tại A
=> ABC = (180o - A) : 2 (2)
Từ (1), (2) => ADC = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> DE // BC (dhnb)
- Xin lỗi bạn nha =)) Hong giải thì thôi có càn phải nói khó nghe vầy hông?
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Xét ΔMBD và ΔMCE có
MB=MC
\(\widehat{B}=\widehat{C}\)
BD=CE
Do đó: ΔMBD=ΔMCE
c: Xét ΔAMD và ΔAME có
AM chung
MD=ME
AD=AE
Do đó:ΔAMD=ΔAME
A B C H K I D E
a) Tao có :) \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
T lại có :) \(\widehat{ABC}=\widehat{HBD}\left(đđ\right)\)
\(\widehat{ACB}=\widehat{KCE}\left(đđ\right)\)
\(\Rightarrow\widehat{HBD}=\widehat{KCE}\)
Xét \(\Delta HBD\)và \(\Delta KCE\)t có :)
\(\widehat{HBD}=\widehat{KCE}\)
\(BD=CE\)
\(\widehat{DHB}=\widehat{EKC}\left(=90^o\right)\)
\(\Rightarrow\Delta HBD=\Delta KCE\left(ch-gn\right)\)
\(\Rightarrow HB=KC\left(đpcm\right)\)
b) T có :) \(\widehat{ABH}+\widehat{ABC}=180^o\)( kề bù )
\(\widehat{ACK}+\widehat{ACB}=180^o\)( kề bù )
Mà :) \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)
Xét \(\Delta AHB\)và \(\Delta AKC\)có :)
\(HB=CK\)
\(\widehat{ABH}=\widehat{ACK}\)
\(AB=AC\)
\(\Rightarrow\Delta AHB=\Delta AKC\left(c-g-c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AKC}\left(đpcm\right)\)
c) Do \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(1\right)\)
Mà :) \(AB=AC\)
\(BD=CE\)
\(\Rightarrow AB+BD=AC+CE\)
\(\Rightarrow AD=AE\)
\(\Rightarrow\Delta ADE\)cân tại A \(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{BAC}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{ABC}=\widehat{ADE}\)
Mà hai góc trên đồng vị :)
\(\Rightarrow HK//DE\left(đpcm\right)\)
d) Theo câu b t có \(\Delta AHB=\Delta AKC\)
\(\Rightarrow\hept{\begin{cases}AH=AK\\\widehat{HAB}=\widehat{KAC}\end{cases}}\)
\(\Rightarrow\widehat{HAB}+\widehat{BAC}=\widehat{KAC}+\widehat{BAC}\)
\(\Leftrightarrow\widehat{HAC}=\widehat{KAB}\)
Xét \(\Delta AHE\)và \(\Delta AKD\)có :)
\(\widehat{HAC}=\widehat{KAB}\)
\(AH=AK\)
\(AE=AD\)
\(\Rightarrow\Delta AHE=\Delta AKD\left(c-g-c\right)\left(đpcm\right)\)
e) \(\Rightarrow\widehat{AHE}=\widehat{AKD}\)
\(\Leftrightarrow\widehat{AHK}+\widehat{KHE}=\widehat{AKH}+\widehat{HKD}\)
Mà :) \(\widehat{AHK}=\widehat{AKH}\)( câu b )
\(\Rightarrow\widehat{KHE}=\widehat{HKD}\Rightarrow\Delta HIK\)cân tại I
\(\Rightarrow HI=IK\)
Xét \(\Delta AHI\)và \(\Delta AKI\)có :)
\(HI=IK\)
\(AH=AK\)
Chung AI
\(\Rightarrow\Delta AHI=\Delta AKI\left(c-c-c\right)\)
\(\Rightarrow\widehat{HAI}=\widehat{KAI}\)
\(\Leftrightarrow\widehat{HAB}+\widehat{BAI}=\widehat{CAI}+\widehat{KAC}\)
Lại có :) \(\widehat{HAB}=\widehat{KAC}\)
\(\Rightarrow\widehat{BAI}=\widehat{CAI}\)
\(\Rightarrow\)AI là tia phân giác \(\widehat{BAC}\)hay \(\widehat{DAE}\)
Mà \(\Delta DAE\)cân tại A
\(\Rightarrow AI\perp DE\)( do đường phân giác của đỉnh tam giác cân cũng chính là đường cao của tam giác cân đó )
Vậy .... :)
Hình vẽ :
a) Dễ nhận thấy DE = KH = 1/2 BC
Do đó KH = 1/2BC suy ra KB + CH = 1/2BC=KH
Vậy KB + CH = KH
Do vậy 2KB + CH = KH + KB (1)
KB + 2CH = KH + KB (2)
Từ đó suy ra CH = KB
Mà HB = KH + KB (3)
CK = KH + HC (4)
Mà KB = HC nên KH + KB = KH + HC hay HB = CK
b) Chứng minh \(\Delta AHB=\Delta AKC\)
Ta có: \(\Delta AHB=\Delta AKC\left(c.g.c\right)\)
Suy ra \(\widehat{AHB}=\widehat{AKC}\)
c) Theo hình vẽ ta có BD = CE và BD là tia đối của BA, nên BD thẳng hàng với BA
CE là tia đối của CA nên CE thẳng hàng với CA
Do đó CE = BD . DO đó EK = DH.
Theo đề bài DH và EK cùng vuông góc BC (5) mà DH = EK do đó \(\widehat{D}=90^o;\widehat{E}=90^o\)(6)
Từ (5) và (6) suy ra HK song song DE
Sau đó tự làm tiếp
a, Xét \(\Delta ADE\) có:
\(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ADE\) cân tại A
\(\Rightarrow\widehat{D}=\widehat{E}=\frac{180^0-\widehat{A}}{2}\) (1)
Xét \(\Delta ABC\) cân tại A có:
\(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{D}=\widehat{B}\) mà hai góc đang ở vị trí đồng vị nên:
\(\Rightarrow DE//BC\)
b, Ta có: \(\left\{{}\begin{matrix}AB=AD+DB\\AC=AE+EC\end{matrix}\right.\)
Mà : \(\left\{{}\begin{matrix}AD=AE\left(gt\right)\\AB=AC\left(\Delta ABCcântạiA\right)\end{matrix}\right.\) \(\Rightarrow DB=EC\)
Xét \(\Delta MBD\) và \(\Delta MEC\) có:
\(DB=EC\left(cmt\right)\)
\(\widehat{B}=\widehat{C}\) ( \(\Delta ABC\) cân tại A)
\(BM=CM\) ( M là trung điểm)
\(\Rightarrow\Delta MBD=\Delta MCE\left(c-g-c\right)\)
c, Ta có: \(\Delta MDB=\Delta MEC\left(cmt\right)\)
\(\Rightarrow DM=EM\) ( 2 cạnh tương ứng)
Xét \(\Delta AMD\) và \(\Delta AME\) có:
\(AD=AE\left(gt\right)\)
\(DM=EM\left(cmt\right)\)
\(AM\) là cạnh chung.
\(\Rightarrow\Delta AMD=\Delta AME\) ( c - c - c)
a) Xét \(\Delta ABH\)và \(\Delta ACK\)có :
\(\widehat{A}\)Chung
\(AB=AC\) ( vì tam giác ABC cân )
\(\widehat{AHB}=\widehat{AKC}=90^o\) ( GT)
Do đó tam giác ABH = tam giác ACK (cạnh huyền - góc nhọn)
b) Vì tam giác ABH = tam giác ACK ( câu a )
\(\Rightarrow CK=BH\) ( cặp cạnh tương ứng)
Xét tam giác CBK và tam giác BCH ta có :
\(BC:\)Cạnh chung
\(\widehat{BKC}=\widehat{CHB}=90^o\) (GT)
\(BC:\)Cạnh chung
Do đó tam giác CBK = tam giác BCH ( cạnh huyền - cạnh góc vuông)
A B M C D E
Help me!!!