Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
A C B M I
A,xét\(\Delta\)vuông ABC(góc A=90 độ):
góc C+gócB=90* (đl trong1 tg vuông)
^C + 60* =90*
^C = 90*-60*
=> ^C =30*.
dựa vào đl góc đối diện với cạnh lớn hơn,có
góc A>góc B>gócC (90>60>30 độ)
=> BC > AC >AB
vậy AB<AC lát nữa mik làm tiếp nha,I'm helping my mom do housework
A B C E N I D M O 1 2 2 1 2 3 1 3 1
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
a. Tính số đo góc HAB
Trong tam giác HAB vuông tại H, ta có
- góc HAB = 180 độ - góc AHB - góc HBA = 180 độ - 90độ - 60độ = 30 độ (đpcm)
b. Trên cạnh AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI=tam giác ADI. Từ đó suy ra AI vuông góc với HD
Xét tam giác DIA và tam giác HIA, có
- DI = HI (I là trung điểm DH)
- cạnh IA chung
- AD = AH (giả thiết)
=> tam giác DIA = tam giác HIA (cạnh - cạnh - cạnh) (đpcm)
Ta có AD = AH => tam giác ADH cân tại A
mà I là trung điểm DH
=> AI là trung trực, trung tuyến, phân giác của tam giác cân ADH
=> AI vuông góc HD(đpcm)
c. Tia AI cat cạnh HC tại điểm K. Chứng minh AB // KD
Xét tam giác ADK và tam giác AHK, có
- AD = AH (giả thiết)
- góc DAK = góc HAK (do AI là phân giác của tam giác cân DAH; mà A,I,K thẳng hàng => AK là phân giác góc DAH)
- cạnh AK chung
=> tam giác ADK = tam giác AHK
=> góc ADK = góc AHK
mà AHK = 90 độ
=> góc ADK = 90 độ
Ta có góc ADK = 90 độ
=> KD vuông góc AC
mà AB cũng vuông góc AC (do tam giác vuông tại A)
=> AB // KD
a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)
=> DM=NE
b) Ta có
\(\Delta MDI\perp D\)=> DMI+MID=90 độ
\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ
mà MID=NEI đối đỉnh
=> DMI=ENI
\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)
=> IM=ỊN
=> BC cắt MN tại I là trung Điểm của MN
c) Gọi H là chân đường zuông góc kẻ từ A xuống BC
=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )
=> góc HAB= góc HAC
Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I
=> tam giác OAB= tam giác OAC (c-g-c)(1)
=> góc OBA = góc OCA ; OC=OB
tam giác OBM= tam giác OCN (c-g-c)
=> góc OBM=góc OCN (2)
từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC
=> O luôn cố đinhkj
=> DPCM
a: EC=12cm
b: Xét ΔABD vuông tại D và ΔaCE vuông tại E có
BA=CA
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
c: Xét ΔIBE vuông tại E và ΔICD vuông tại D có
EB=DC
góc IBE=góc ICD
Do đó: ΔIBE=ΔICD
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta co: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có MB=MC
nen M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng
a: ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-50^0}{2}=65^0\)
Xét ΔABC có \(\widehat{ACB}>\widehat{BAC}\)
mà AB,BC là cạnh đối diện của các góc ACB,BAC
nên AB>BC
b: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
c: ta có: AB=AE
mà A nằm giữa B và E
nên A là trung điểm của BE
Xét ΔCBE có
CA là đường trung tuyến
\(CA=\dfrac{BE}{2}\)
Do đó: ΔCBE vuông tại C
=>CE\(\perp\)CB
mà AM\(\perp\)CB
nên AM//CE
Ta có: ED\(\perp\)AM
AM//CE
Do đó; ED\(\perp\)EC