K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017
Khó quá
AH
Akai Haruma
Giáo viên
1 tháng 1 2020

Lời giải:

a)

Sử dụng công thức về tia phân giác ta có:

\(\frac{DI}{AI}=\frac{BD}{AB}\Rightarrow \frac{DI}{DA}=\frac{BD}{AB+BD}(1)\)

\(\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow \frac{BD}{BC}=\frac{AB}{AB+AC}\Rightarrow BD=\frac{AB.BC}{AB+AC}(2)\)

Từ \((1);(2)\Rightarrow \frac{DI}{DA}=\frac{\frac{AB.BC}{AB+AC}}{AB+\frac{AB.BC}{AB+AC}}=\frac{AB.BC}{AB(AB+BC+AC)}=\frac{BC}{AB+BC+AC}=\frac{a}{a+b+c}\)

Ta có đpcm.

b)

Sử dụng kết quả phần a:

\(\frac{DI}{DA}=\frac{a}{a+b+c}\)

Bằng cách chứng minh hoàn toàn tương tự ta cũng có:

\(\frac{EI}{EB}=\frac{b}{a+b+c}; \frac{FI}{FC}=\frac{c}{a+b+c}\)

Do đó:

\(\frac{DI}{DA}+\frac{EI}{EB}+\frac{FI}{FC}=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
1 tháng 1 2020

Hình vẽ:

Tính chất đường phân giác của tam giác

a: Xét ΔDBA vuông tại D và ΔABC vuông tại A có

góc ABC chung

Do đó: ΔDBA\(\sim\)ΔABC

Suy ra: DB/AB=AB/BC(1)

b: Xét ΔBDA có BFlà phân giác

nên DF/FA=DB/AB(2)

Xét ΔABC có BE là phân giác

nên AE/EC=BA/BC(3)

Từ (1), (2) và (3) suy ra DF/FA=AE/EC

15 tháng 12 2022

AB=BC=2CD=4DE

=>CD=1/2AB=1/2BC; DE=1/4AB=1/4BC=1/2CD

BE=BC+CE=AB+CD+DE=AB+1/2AB+1/4AB=7/4AB

=>AB/BE=1:7/4=4/7

AE=AB+BE=AB+7/4AB=11/4AB

AC=2AB

=>AC/AE=2:11/4=2*4/11=8/11

AD=AB+BD=AB+BC+CD=AB+AB+1/2AB=5/2AB

AE=11/4AB

=>AD/AE=5/2:11/4=5/2*4/11=20/22=10/11

BD=BC+CD=AB+1/2AB=3/2AB

AE=11/4AB

=>AE/BD=11/4:3/2=11/4*2/3=22/12=11/6

AH
Akai Haruma
Giáo viên
26 tháng 1 2018

Lời giải:

$AB,BC,AC$ tỉ lệ với $4,7,5$ \(\Leftrightarrow \frac{AB}{4}=\frac{BC}{7}=\frac{CA}{5}(*)\)

a) Sử dụng công thức đường phân giác kết hợp với \((*)\) ta có:

\(\frac{MC}{BM}=\frac{AC}{AB}=\frac{5}{4}\)

\(\Rightarrow \frac{MC}{BM+MC}=\frac{5}{4+5}\Leftrightarrow \frac{MC}{BC}=\frac{5}{9}\)

\(\Rightarrow MC=\frac{5}{9}BC=\frac{5}{9}.18=10\) (cm)

b) Sử dụng công thức đường phân giác kết hợp với \((*)\) ta có:

\(\frac{NC}{NA}=\frac{BC}{AB}=\frac{7}{4}\)\(\Leftrightarrow \frac{NC}{7}=\frac{NA}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{NC+NA}{7+4}=\frac{NC}{7}=\frac{NA}{4}=\frac{NC-NA}{7-4}\)

\(\Leftrightarrow \frac{AC}{11}=\frac{3}{3}=1\Rightarrow AC=11\) (cm)

c)

Vì $AO$ là phân giác góc $PAC$, $BO$ là phân giác góc $PBC$ nên áp dụng công thức đường phân giác:

\(\frac{OP}{OC}=\frac{AP}{AC}=\frac{BP}{BC}\)

AD tính chất dãy tỉ số bằng nhau:

\(\frac{OP}{OC}=\frac{AP}{AC}=\frac{BP}{BC}=\frac{AP+BP}{AC+BC}=\frac{AB}{AC+BC}\)

Theo \((*)\Rightarrow AC=\frac{5}{4}AB; BC=\frac{7}{4}AB\)

\(\frac{OP}{OC}=\frac{AB}{AC+BC}=\frac{AB}{\frac{5}{4}AB+\frac{7}{4}AB}=\frac{AB}{3AB}=\frac{1}{3}\)

d) Áp dụng công thức đường phân giác:

\(\left\{\begin{matrix} \frac{MB}{MC}=\frac{AB}{AC}\\ \frac{NC}{NA}=\frac{BC}{AB}\\ \frac{PA}{PB}=\frac{AC}{BC}\end{matrix}\right.\Rightarrow \frac{MB}{MC}.\frac{NC}{NA}.\frac{PA}{PB}=\frac{AB}{AC}.\frac{BC}{AB}.\frac{AC}{BC}=1\)

(đpcm)

Chứng minh \(\frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}>\frac{1}{AB}+\frac{1}{BC}+\frac{1}{AC}\)

Kẻ \(MH\perp AB, MK\perp AC, CL\perp AB\)

Ta có bổ đề sau: \(\sin (2\alpha)=2\sin \alpha\cos \alpha\)

Chứng minh :

Thật vậy, xét một tam giác $ABC$ vuông tại $A$ có đường cao $AH$ và trung tuyến $AM$, góc \(\angle ACB=\alpha\)

Khi đó: \(AM=MB=MC=\frac{BC}{2}\Rightarrow \triangle AMC\) cân tại $M$
\(\Rightarrow \angle MAC=\angle MCA=\alpha\)

\(\Rightarrow \angle HMA=\angle MAC+\angle MCA=2\alpha\)

\(\Rightarrow \sin 2\alpha=\sin HMA=\frac{HA}{MA}=\frac{HA}{\frac{BC}{2}}=\frac{2HA}{BC}\) (1)

Lại có: \(\sin \alpha=\sin \angle ACB=\frac{AH}{AC}\)

\(\cos \alpha=\frac{AC}{BC}\)

\(\Rightarrow \sin \alpha\cos \alpha=\frac{AH}{AC}.\frac{AC}{BC}=\frac{AH}{BC}\) (2)

Từ (1); (2) suy ra \(\sin 2\alpha=2\sin \alpha\cos \alpha\) (đpcm)

------------------------------

Áp dụng vào bài toán:

Ta có: \(\sin A=2\sin \frac{A}{2}\cos \frac{A}{2}\)

\(S_{ABM}+S_{AMC}=S_{ABC}\)

\(\Leftrightarrow \frac{MH.AB}{2}+\frac{MK.AC}{2}=\frac{CL.AB}{2}\)

\(\Leftrightarrow AB.\sin \frac{A}{2}.AM+\sin \frac{A}{2}.AM.AC=\sin A.AC.AB\)

\(\Leftrightarrow AM=\frac{\sin A.AB.AC}{\sin \frac{A}{2}.AB+\sin \frac{A}{2}.AC}=\frac{2\sin \frac{A}{2}\cos \frac{A}{2}.AB.AC}{\sin \frac{A}{2}.AB+\sin \frac{A}{2}.AC}\)

\(\Leftrightarrow AM=\frac{2\cos \frac{A}{2}.AB.AC}{AB+AC}\)

\(\Leftrightarrow \frac{1}{AM}=\frac{AB+AC}{2AB.AC\cos \frac{A}{2}}=\frac{1}{2\cos \frac{A}{2}}(\frac{1}{AB}+\frac{1}{AC})\)

Tương tự: \(\frac{1}{BN}=\frac{1}{2\cos \frac{B}{2}}(\frac{1}{BA}+\frac{1}{BC})\)

\(\frac{1}{CP}=\frac{1}{2\cos \frac{C}{2}}(\frac{1}{CB}+\frac{1}{CA})\)

Cộng theo vế:

\(\frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}=\frac{1}{2\cos \frac{A}{2}}(\frac{1}{AB}+\frac{1}{AC})+\frac{1}{2\cos \frac{B}{2}}(\frac{1}{BA}+\frac{1}{BC})+\frac{1}{2\cos \frac{C}{2}}(\frac{1}{CA}+\frac{1}{CB})\)

\(> \frac{1}{2}(\frac{1}{AB}+\frac{1}{AC})+\frac{1}{2}(\frac{1}{BC}+\frac{1}{AC})+\frac{1}{2}(\frac{1}{CB}+\frac{1}{CA})\) (do \(\cos \alpha < 1\) vì cạnh góc vuông luôn nhỏ hơn cạnh huyền)

\(\Leftrightarrow \frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}> \frac{1}{AB}+\frac{1}{BC}+\frac{1}{CA}\)

Ta có đpcm.

 

 

 

 

26 tháng 1 2018

Lớp 8 chưa học tỉ số lượng giác đâu cô