Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
a: Xét ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
Bài 3:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
BC=13cm
=>\(AC=3\sqrt{13}\left(cm\right)\)
a, Xét △AHB vuông tại H có: BH2 + AH2 = AB2 (định lý Pytago) => 92 + AH2 = 152 => AH2 = 144 => AH = 12 (cm)
Ta có: BH + HC = BC => 9 + HC = 25 => HC = 16 (cm)
Xét △AHC vuông tại H có: HC2 + AH2 = AC2 (định lý Pytago) => 162 + 122 = AC2 => AC2 = 400 => AC = 20 (cm)
b, Xét △ABC có: AB2 + AC2 = 152 + 202 = 625 (cm)
BC2 = 252 = 625 (cm)
=> AB2 + AC2 = BC2
=> △ABC vuông tại A (định lý Pytago)
Hình tự vẽ:
a) Áp dụng đlý Py-ta-go vào TG AHB vuông tại H ta có:
AB2 = AH2 + BH2
hay 152 = AH2 + 92
⇒ ........
⇒ AH = 12cm
Độ dài cạnh HC là: BC - BH = 25 - 9 = 16cm
Áp dụng đlí Py-ta-go vào TG AHC vuông tại H ta có:
AC2 = AH2 + HC2
hay AC2 = 122 + 162
⇒ ..........
⇒ AC = 20cm
b) Ta có: 252 = 625
152 + 202 = 225 + 400 = 625
⇒ 252 = 152 + 202
hay BC2 = AB2 + AC2
Suy ra TG ABC vuông tại A (theo định lí Py-ta-go đảo)
Giúp rồi đóa, nhớ tick nha
a, Xét Δ AHC vuông tại H, có :
\(AB^2=AH^2+HB^2\)
=> \(AB^2=12^2+9^2\)
=> \(AB^2=225\)
=> AB = 15 (cm)
Xét Δ AHC vuông tại H, có :
\(AC^2=AH^2+HC^2\)
=> \(AC^2=12^2+16^2\)
=> \(AC^2=400\)
=> AC = 20 (cm)
Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go đảo)
=> Δ ABC vuông tại A
a) HC=BC-BH=25-9=16 (cm)
Xét \(\Delta\)BHA có:
AH2=AB2-BH2=152-92=144
\(AH=\sqrt{144}=12\left(cm\right)\)
Xét \(\Delta\)AHC có:
AC2=AH2+HC2=122+162=400
=> AC=20(cm)
b) AB2+AC2=152+202=625
BC2=252=625
=> BC2=AB2+AC2
=> \(\Delta\)ABC vuông tại A (đpcm)
- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2+5^2=13^2\)
\(\Rightarrow AC=12\left(cm\right)\)
- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)
=> Hai tam giác trên đồng dạng .
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)
=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)
- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)
Vậy ...