\(^2\)+3x\(^3\)-5x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(P\left(x\right)=5x^2+3x^3-5x^2+2x^3-2+4x-4x^2+x^3\)

\(=\left(3x^3+2x^3+x^3\right)+\left(5x^2-5x^2-4x^2\right)+4x-2\)

\(=6x^3-4x^2+4x-2\)

Ta có: \(Q\left(x\right)=6x-x^3+5-6x^3-6+7x^2-10x^2\)

\(=\left(-x^3-6x^3\right)+\left(7x^2-10x^2\right)+6x+\left(5-6\right)\)

\(=-7x^3-3x^2+6x-1\)

b) Ta có: P(x)+Q(x)

\(=6x^3-4x^2+4x-2-7x^3-3x^2+6x-1\)

\(=-x^3-7x^2+10x-3\)

Ta có: P(x)-Q(x)

\(=6x^3-4x^2+4x-2+7x^3+3x^2-6x+1\)

\(=13x^3-x^2-2x-1\)

20 tháng 4 2018

\(M\left(x\right)=P\left(x\right)+Q\left(x\right)=2,5x^6-4+2,5x^5-6x^3+2x^2\)-5x+\(3x-2,5x^6-x^2+5-2,5x^5+6x^3\)

=\(\left(2,5x^6-2,5x^6\right)\)+\(\left(2,5x^5-2,5x^5\right)\)\(\left(-6x^3+6x^3\right)\)+\(\left(2x^2-x^2\right)\)+\(\left(-5x+3x\right)\)+(-4+5)

= \(x^2-2x+1\)

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Lời giải:

a)

$M(x)=(x^5+5x^5)-2x^4-4x^3+3x$

$=6x^5-2x^4-4x^3+3x$

$N(x)=-6x^5+(7x^4-5x^4)+(x^3+3x^3)+4x^2-3x-1$

$=-6x^5+2x^4+4x^3+4x^2-3x-1$

b)

$M(-1)=6(-1)^5-2(-1)^4-4(-1)^3+3(-1)=-7$

$N(-2)=-6(-2)^5+2(-2)^4+4(-2)^3+4(-2)^2-3(-2)-1$

$=213$

c)

$M(x)+N(x)=(6x^5-2x^4-4x^3+3x)+(-6x^5+2x^4+4x^3+4x^2-3x-1)$

$=4x^2-1$

$M(x)-N(x)=(6x^5-2x^4-4x^3+3x)-(-6x^5+2x^4+4x^3+4x^2-3x-1)$

$=12x^5-4x^4-8x^3-4x^2+6x+1$

d)

$F(x)=M(x)+N(x)=4x^2-1=0\Leftrightarrow x^2=\frac{1}{4}$

$\Leftrightarrow x=\pm \frac{1}{2}$

Vậy $x=\pm \frac{1}{2}$ là nghiệm của $F(x)$

3 tháng 4 2022

a) \(P\left(x\right)=2+5x^2-3x^2+4x^2-2x-x^3+6x^5\)

\(P=6x^5-x^3+\left(5x^2-3x^2+4x^2\right)-2x+2\)

\(P=6x^5-x^2+6x^2-2x+2\)

b) Hệ số khác 0 của đa thức P(x): 6; -1; 6; -2; 2

Sắp xếp A(x)=\(2x^5+x^3+x^2-7x-9\)

B(x)=\(x^4+4x^3+4x^2+5x+11\)

b,M(x)= \(2x^5+x^4+5x^3+5x^2-2x+2\)

N(x)=\(2x^5-x^4-3x^3-3x^2-12x-20\)

c, Thay x=2 vào N(x) ta được

N(2)=0 Vậy 2 là nghiệm của đt N(x)

Thay x=2 vào M(x) ta được 

M(2)=.... \(\ne\)0(tự tính nha)

Vậy.............

5 tháng 4 2018

1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)

\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)

\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

2)       \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

      +

          \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)

                \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

-

                \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)

16 tháng 6 2020

a) f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8

g(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6

f(x) + g(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8 + x5 + 7x4 + 2x3 + 3x2 - 5x - 6

                 = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 3x2 + x2 ) + ( 4x - 5x ) + ( 8 - 6 )

                 = 4x2 - x + 2

g(x) - f(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6 - ( -x5 - 7x4 - 2x3 + x2 + 4x + 8 )

                = x5 + 7x4 + 2x3 + 3x2 - 5x - 6 + x5 + 7x4 + 2x3 - x2 - 4x - 8

               = ( x5 + x5 ) + ( 7x4 + 7x4 ) + ( 2x3 + 2x3 ) + ( 3x2 - x2 ) + ( -5x - 4x ) + ( -6 - 8 )

                = 2x5 + 14x4 + 4x3 + 2x2 -9x - 14

16 tháng 6 2020

Đặt H(x) = g(x) + f(x)

=> H(x) = 4x2 - x + 2

H(x) = 0 <=> 4x2 - x + 2 = 0

              <=> x(4x - 1) = -2

x-1-212
4x-121-2-1
x1/41/2-1/40
 loạiloạiloạiloại

=> Không có giá trị x thỏa mãn 

Vậy H(x) vô nghiệm

Mình chỉ biết làm thế này thôi