Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=-1 vào đa thức f(x) có:
\(f\left(-1\right)=-1+a-b-2=0\Leftrightarrow a-b=3\)\(\Leftrightarrow a=3+b\)(1)
Thay x=1 vào đa thức f(x) có:
\(f\left(-1\right)=1+a+b-2=0\Leftrightarrow a+b=1\)(2)
Thay (1) vào (2) ta có:
\(3+b+b=1\)
\(\Leftrightarrow2b=-2\)
\(\Leftrightarrow b=-1\)
\(\Leftrightarrow a=2\)
KL:................
\(f\left(-1\right)=-1+a-b-2=0\left(1\right)\)
\(f\left(1\right)=1+a+b-2=0\left(2\right)\)
Lấy (1) cộng (2) ta đc :
\(2a-4=0\)
\(a=2\)
Thay a=2 vào (1) ta đc : b=-1
Vậy ...
f(1)=\(1^3+a.1^2+b.1-2=0\Rightarrow a+b=1\)1
f(-1)=\(\left(-1\right)^3+a.\left(-1\right)^2-b-2=0\) \(\Rightarrow a-b=3\)
\(\Rightarrow a+b+a-b=4\)\(\Rightarrow a=2\Rightarrow b=1\)
a)
A(x)=5x3+8x2-8x+6
B(x)=-5x3-3x2-2x-6
b)
M(x)=A(x)+B(x)
=5x3+8x2-8x+6-5x3-3x2-2x-6=5x2-10x
c)
M(-1)=5.(-1)2-10.(-1)=15
Chị hai ghi thiếu rùi ! Câu d phải là : Tìm nghiệm của đa thức M(x) để đa thức có giá trị bằng 0 thì em mới làm được !
Em làm với đa thức M(x)=0 nhé !
M(x)=5x2-10x=0
<=>5x(x-2)=0
<=>\(\left[{}\begin{matrix}5x=0\\x-2=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy pt có nghiệm là x=0 ; x=2
a)M(x)=-x4+(2x3-4x3)+(4x2-4x2)-2x-5
=-x4-2x3-2x-5
Bậc của đa thức:4
Hệ số cao nhất:-1
Hệ số tự do:-5
N(x)=(-x4+2x4)+2x3-x2+3x+5
=x4+2x3-x2+3x+5
Bậc của đa thức:4
Hệ số cao nhất:1
Hệ số tự do:5
b)Thay x=-1 vào N(x) ta có:
(-1)4+2.(-1)3-(-1)2+3.(-1)+5
=1-2-1-3+5
=0
c)P(x)-M(x)=N(x)
=>P(x)=N(x)+M(x)=(x4+2x3-x2+3x+5)+(-x4-2x3-2x-5)
=(x4-x4)+(2x3-2x3)-x2+(3x-2x)+(5-5)
=-x2+x
d)P(x)=-x2+x=-x(x-1)
Cho P(x)=0=>-x(x-1)=0
<=>-x=0 hoặc x-1=0
<=>x=0 hoặc x=1
Vậy...
Bài 1:
Đặt \(h_{\left(x\right)}=0\)
\(\Leftrightarrow x^2-5x+5=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5}{2}=\frac{\sqrt{5}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{5}+5}{2}\\x=\frac{-\sqrt{5}+5}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5+\sqrt{5}}{2};\frac{5-\sqrt{5}}{2}\right\}\)
Bài 2:
a) Đặt \(f_{\left(x\right)}=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
b) Đặt \(g_{\left(x\right)}=0\)
\(\Leftrightarrow x^3-4x=0\)
\(\Leftrightarrow x\left(x^2-4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: S={0;2;-2}
c) Đặt \(h_{\left(x\right)}=0\)
\(\Leftrightarrow x^3+8=0\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Vậy: S={-2}
d) Đặt \(p_{\left(x\right)}=0\)
\(\Leftrightarrow x^3+x^2+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\)(vì \(x^2+1>0\forall x\))
hay x=-1
Vậy: S={-1}
Với x = -1
=> M(-1) = 1 - a + b = 0 => a - b = 1
=> M(-2) = 4 - 2a + b = 0 => 2a - b = 4
=> 2a - b - a + b = 4 - 1 = 3
=> a = 3
=> b = 3 - 1 = 2
x = -1
\(\Rightarrow\)M ( -1 ) = 1 - a + b = 0 \(\Rightarrow\)a - b = 1
\(\Rightarrow\)M ( - 1 ) = 4 - 2a + b = 0 \(\Rightarrow\)2a - b = 4
\(\Rightarrow\)2a - b - a + b = 4 -1 = 3
\(\Rightarrow\)a = 3 ; b = 3 - 1 = 2