\(^2\)+ bx + c

CMR: f - 2. f3 lớn hoặc bằng 0 biết 13a +...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

\(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\)

               \(=4a-2b+c\)

\(f\left(3\right)=a.3^2+b.3+c\)

           \(=9a+3b+c\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c\)

                                      \(=13a+b+2c\)

                                       \(=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)\le0\)

20 tháng 4 2019

phải là Cm nhỏ hơn hoặc bằng 0 mới đúng nha bạn

Mà f(-2) . f(3) phải trong ngoặc ko tưởng nhầm đấy

Học tốt.

9 tháng 4 2017

hình như đề sai rùi bn

5 tháng 4 2017

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)

13 tháng 5 2019

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\)

                    \(=4a-2b+c\)

\(\Rightarrow f\left(3\right)=a.3^2+b.3+c\)

                  \(=9a+3b+c\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

                                      \(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)\le0\)

2 tháng 5 2021

Ta có : f(-2) = 4a - 2b + c

f(3) = 9a + 3b + c

Lại có f(-2) + f(3) = 4a - 2b + c + 9a + 3b + c = 13a + b + 2c = 0(Vì 13a + b + 2c = 0)

=> f(-2) = - f(3)

=> [f(-2)]2  = -f(3).f(-2)

mà [f(-2)]2 \(\ge0\)

=> -f(3).f(-2) \(\ge0\)

=> f(-2).f(3) \(\le\)0

30 tháng 3 2019

\(f\left(x\right)=ax^2+bx+c\)

Ta có : \(f\left(-2\right)=4a-2b+c\)

          \(f\left(3\right)=9a+3b+c\)

\(\Rightarrow\) \(f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c\)

                                       \(=13a+b+c\)

                                       \(=0\)

\(\Rightarrow\) \(-f\left(-2\right)=f\left(3\right)\)

\(\Rightarrow\) \(f\left(-2\right).f\left(3\right)=f\left(-2\right).-f\left(-2\right)=-\left[f\left(-4\right)\right]^2\le0\)

\(\Rightarrow\) \(đpcm\)

Study well ! >_<

30 tháng 3 2019

tốt lắm bạn