\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Chứng minh 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2016

Vì  a/b=b/c=c/d=>(a+b+c)/(b+c+d)=a/b.=>(a+b+c/b+c+d)3=(a/b)3=a/b.a/b.a/b

Mà a/b=b/c=c/d=>(a+b+c/b+c+d)3=a/b.b/c.c/d=(a.b.c)/(b.c.d)=a/d

=>ĐPCM

10 tháng 7 2019

Mình chỉ làm bài 1a, và bài 3 thôi nhé,còn lại là bạn tự làm nhé

Bài 1:

a, Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\left[\frac{a}{b}\right]^2=\left[\frac{c}{d}\right]^2=\left[\frac{a+c}{b+d}\right]^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{(a+c)^2}{(b+d)^2}\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)

Bài 3 : Sửa đề : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

CM : a = b = c

10 tháng 7 2019

Cách 1 : Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

vì \(a+b+c\ne0\)

\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)

Do đó : \(a=b=c\).

Cách 2 : Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=m\), ta có : \(a=bm,b=cm,c=am\)

Do đó : \(a=bm=m(mc)=m\left[m(ma)\right]\)

\(\Rightarrow a=m^3a\Rightarrow m^3=1(a\ne0)\Rightarrow m=1\)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)

Cách 3 : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}=\left[\frac{a}{b}\right]^3\Rightarrow1=\left[\frac{a}{b}\right]^3\Rightarrow\frac{a}{b}=1\)

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)

21 tháng 9 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

a) \(\frac{a+c}{b+d}=\frac{kb+kd}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)(1)

\(\frac{a-c}{b-d}=\frac{kb-kd}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)(2)

Từ (1) và (2) => đpcm 

b) \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(kb+b\right)^2}{\left(kd+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{kb\cdot b}{kd\cdot d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2) => đpcm

c) \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{kb+b}{kd+d}\right)^2=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\)(1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{k^2b^2+b^2}{k^2d^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2) => đpcm

28 tháng 7 2016

bạn áp dụng dãy tỉ số bằng nhau là xong

28 tháng 7 2016

1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)

2) ta có \(\frac{a}{b}=\frac{c}{d}\)

đặt a=kb và c=kd

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

26 tháng 7 2016

a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{a.a}{c.c}=\frac{b.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

6 tháng 10 2017

a) Ta co: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

             \(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

b) Ta co: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

            \(\Rightarrow\frac{a+c}{b+d}=\frac{a}{b}\)

16 tháng 5 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=kd\left(3\right)\)

    Ta có:\(\frac{a^2-b^2}{ab}=\frac{b^2k^2-b^2}{b^2k}=\frac{k^2-1}{k}\left(1\right)\)

              \(\frac{c^2-d^2}{cd}=\frac{k^2d^2-d^2}{d^2k}=\frac{k^2-1}{k}\left(2\right)\)

Từ (1) và (2) suy ra:đpcm

b)\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)

Từ (3) ta được:\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(bk+b\right)^2}{b^2k^2+b^2}=\frac{\left[b\left(k+1\right)\right]^2}{b^2\left(k^2+1\right)}=\frac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\left(4\right)\)

                       \(\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left(dk+d\right)^2}{d^2k^2+d^2}=\frac{\left[d\left(k+1\right)\right]^2}{d^2\left(k^2+1\right)}=\frac{d^2\left(k+1\right)^2}{d^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\left(5\right)\)

Từ (4) và (5) ta được đpcm

6 tháng 10 2017

ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

6 tháng 10 2017

Cảm ơn bạn nhưng mình đang muốn tìm cách khác giải rõ hơn.