\(f\left(x\right)=ax^2+bx+c\)Xác định a,b,c
Biết f(-2)=0 và f(2)=0...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: f(0)=1

<=> ax+bx+c=1

<=> c=1

          f(1)=0

<=>ax+bx+c=0

<=> a+b+c=0

mà c=1

=>a+b=-1(1)

      f(-1)=10

<=> ax2 +bx +c=10

<=>a-b+c=10

mà c=1

=>a-b=9(2)

Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9

                           <=> 2b=-10

                           <=> b=-5

                           =>a=4

Vậy a=4,b=-5,c=1

Nhớ k đúng cho mik

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

Ta có:

$f(4)=16a+4b+c$

$f(-2)=4a-2b+c$

Cộng theo vế: $f(4)+f(-2)=20a+2b+2c=2(10a+b+c)=2.0=0$

$\Rightarrow f(-2)=-f(4)$

$\Rightarrow f(4).f(-2)=f(4).-f(4)=-f(4)^2\leq 0$

Ta có đpcm.

12 tháng 12 2015

Vì f(0)=5 nên x*0+b*0+c=5

                    0+0+c=5 nên c=5

Vì f(1)=0 nên a*12+b*1+5=0

                  a+b+5=0

                 a+b=0-5

               a+b=-5

Vì f(5)=0 nên a*52+b*5+5=0

                   5(5a+b+1)=0

                   5a+b+1=0/5=0

                   4a+a+b=0-1

                   4a+(-5)=-1

                    4a=-1-(-5)

                   4a=4

                  a=4/4

                 a=1

nên b=-5-1=-6

Vậy a=1;b=-6 và c=5

12 tháng 12 2015

Ta co: 

  • f(0) = a.02+b.0+c = 0+0+c = c= 5
  • f(1) = a.12+b.1+c = a+b+5 = 0  => a+b = -5
  • f(5) = a.52+b.5+c = 25a + 5b + 5 = 0  => 25a+5b = -5

=> a+b = 25a+5b = -5

=> 25a-a + 5b-b = 0

=> 24a + 4b = 0

=> 24a = -4b

=> 24/-4 = b/a

=> b/a = -6

Tu \(\frac{b}{a}=-6=>\frac{b}{-6}=\frac{a}{1}=\frac{b+a}{-6+1}=-\frac{5}{-5}=1\)

=> a = 1  ;  b=-6

Vay: a=1  ;  b=-6  ;  c =5