K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

a, \(A+B=x^2-2x-y^2+3y-1+\left(-2x^2+3y^2-5z+3\right)\)

\(=x^2-2x-y^2+3y-1-2x^2+3y^2-5z+3\)

\(=-x^2-2x+2y^2+3y-5z+2\)

b, \(A-B=x^2-2x-y^2+3y-1-\left(-2x^2+3y^2-5z+3\right)\)

\(=x^2-2x-y^2+3y-1+2x^2-3y^2+5z-3\)

\(=3x^2-2x-4y^2+3y+5z-4\)

c, Thay x=-2,y=1 vào biểu thức A-B ta được:

\(A-B=3.\left(-2\right)^2-2.\left(-2\right)-4.1^2+3.1+5z-4=12+4-4+3+5z-4=11+5z\)

18 tháng 7 2018

\(A=x^2-2x-y^2+3y-1\)

\(B=-2x^2+3y^2-5z+3\)

a)  A+B =

\(\left(x^2-2x-y^2+3y-1\right)+\left(-2x^2+3y^2-5z+3\right)\)

\(=\left(x^2-2x^2\right)-\left(y^2+3y^2\right)-2x+3y-5z-1+3\)

\(=-x^2-4y^2-2x+3y-5z-1+3\)

\(=\left(-1-4-2+3-5-1+3\right).\left(x^2-x\right).y^2.z\)

\(=-7xy^2z\)

b ) Tính A-B ( tương tự A+B )

C)  Thay x=-2 và y=1 vào biểu thức ta có :

\(-7xy^2z\)

\(=-7.-2.1.z\)

\(=14z\)

12 tháng 6 2021

a. \(A+B=x^2-2x-y^2+3y-1-2x^2+3y^2-5x+y+3\)

\(=\left(x^2-2x^2\right)-\left(2x+5x\right)+\left(3y^2-y^2\right)+\left(3y+y\right)+\left(3-1\right)\)

\(=2y^2+4y-x^2-7x+2\)

Thay `x = 2` và `y = -1` vào `A + B` ta được:

\(2.\left(-1\right)^2+4.\left(-1\right)-2^2-7.2+2=-18\)

b. \(A-B=x^2-2x-y^2+3y-1-\left(-2x^2+3y^2-5x+y+3\right)\)

\(=x^2-2x-y^2+3y-1+2x^2-3y^2+5x-y-3\)

\(=\left(x^2+2x^2\right)+\left(5x-2x\right)-\left(y^2+3y^2\right)+\left(3y-y\right)-\left(1+3\right)\)

\(=3x^2+3x-4y^2+2y-4\)

Thay `x = -2` và `y = 1` vào `A - B` ta được:

\(3.\left(-2\right)^2+3.\left(-2\right)-4.1^2+2.1^2-4=0\)

17 tháng 5 2016

1. G= 3x2y - 2xy2 + x3y3 + 3xy- 2x2y - 2x3y3

G = x2y + xy2 - x3y3 = xy (x + y -x2y2)  . Khi x= -2 . y=4 ta có G= -2*4( -2 + 4 - (-2)* 4) = 496

 

17 tháng 5 2016

a. B+A =( -2x2 + xy +2y2 -5x +2y - 3) + ( x-3xy -y2 +2x -3y +1)= -x2 - 2xy + y2 -3x -y -2 

A-B= -( -2x+xy + 2y2 -5x +2y -3) + ( x2 -3xy -y2 + 2x -3y +1) = 3x2 -4xy -3y2 +7x -5y +4

Tại x = -1, y =2

A= (-1)2 -3*(-1)*2 -22 +2*(-1) -3*2 +1 = -4

B= -2*(-1)2 + (-1)*2 + 2*22 -5*(-1) + 2*2 -3 = 10

NV
9 tháng 1 2023

Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{-4k-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-1k}=-16\)

Gợi ý nhá

Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.

b)  Bạn chỉ cần cho tử và mẫu mũ 3 lên.  theé là dễ r

27 tháng 10 2018

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

tự tính tiếp =)

11 tháng 4 2022

\(a,\)\(A\left(x\right)+B\left(x\right)=x^2-2x+1+x^2+2x+1=2x^2+2\)

\(b,\)\(A\left(x\right)-B\left(x\right)=x^2-2x+1-x^2-2x-1=-4x\)

\(c,\)Thay \(x=1\) vào \(A\left(x\right)\) ta được

\(A\left(x\right)=1^2-2.1+1=0\)

11 tháng 4 2022

undefined

 

13 tháng 7 2017

Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)

b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)

c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)

Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2   -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy