Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=0
<=>(x-1)(x+2)=0
<=>x-1=0 hoặc x+2=0
<=>x=1 hoặc x=-2
tiếp theo thay vô làm
Vì f(x)=(x-1)(x+2) nên 1 và -2 là nghiệm của f(x)
Nghiệm của f(x) cũng là nghiệm của g(x) nên g(1)=0 và g(-2)=0
Ta có: g(1)=0=1+a+b+2
\(\Rightarrow a+b=-3\)
g(-2)=0=(-8)+4a-2b+2
\(\Rightarrow4a-2b=6\)
Ta có : \(\hept{\begin{cases}2a+2b=-6\\4a-2b=6\end{cases}}\)
\(\Rightarrow6a=0\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=-3\end{cases}}\)
Ta có: \(f\left(x\right)=\left(x-1\right)\left(x+2\right)\Leftrightarrow n^0\in\left\{1;-2\right\}\)
Vì nghiệm của f(x) cũng là nghiệm của g(x) nên ta có:
+ Nếu x = 1: \(a+b+3=0\Leftrightarrow a+b=-3\Rightarrow2a+2b=-6\)
+ Nếu x = -2: \(4a-2b-6=0\Leftrightarrow4a-2b=6\)
Cộng vế 2 đẳng thức trên ta được:
\(2a+2b+4a-2b=-6+6\)
\(\Leftrightarrow6a=0\Rightarrow a=0\)
\(\Rightarrow b=-3\)
Vậy \(\hept{\begin{cases}a=0\\b=-3\end{cases}}\)
Nghiệm của 2 đa thức như nhau nên ta có:
Nghiệm của đa thức f(x) là:
\(\left(x-1\right)\left(x+2\right)=0\)
<=> x=1;x=-2
Thay x=1 vào g(x):
1+a+b+2=0 => a+b=-3 => a=-b-3 (1)
Thay x=-2 vào g(x):
-8+4a-2b+2=0 =>4a-2b=6 (2)
Thay 1 vào 2, ta có:
4x(-b-3)-2b=6
<=>-4b-12-2b=6
<=>-6b=18
<=>b=-3
=> a=0
\(f_{\left(x\right)}=3x+3=0\)
\(\Rightarrow\)\(3x=-3\)
\(\Rightarrow\)\(x=-1\)
vậy...
Cách 1: Đặt \(g\left(x\right)=f\left(x\right)\left(x-m\right)\Leftrightarrow x^3+ax^2+bx+2=\left(x-1\right)\left(x+2\right)\left(x-m\right)\)
\(\Leftrightarrow x^3+ax^2+bx+2=x^3+\left(1-m\right)x^2+\left(-m-2\right)x+2m\)
Đồng nhất hệ số 2 vế ta được: \(\hept{\begin{cases}a=1-m\\b=-m-2\\2=2m\end{cases}}\Leftrightarrow\hept{\begin{cases}m=1\\a=0\\b=-3\end{cases}}\)
Vậy a=0,b=-3
Cách 2:
Ta có: \(\hept{\begin{cases}f\left(1\right)=0\\f\left(-2\right)=0\end{cases}}\Rightarrow\hept{\begin{cases}g\left(1\right)=0\\g\left(-2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1^3+a.1^2+b.1+2=0\\\left(-2\right)^3+a.\left(-2\right)^2+b.\left(-2\right)+2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=-3\\4a-2b=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=-3\end{cases}}\)
Vậy a=0,b=-3
Đa thức f(x) có nghiệm
Khi f(x)=(x-1)(x+2)=0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
Sau đó bạn thay từng cái vô và vừa đặt =0 để tìm a,b.