K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 7 2018

Lời giải:

Thực hiện khai triển và rút gọn thu được:

\(B=\frac{x^3}{2}-\frac{1}{2}x^4+\frac{1}{2}x^2+\frac{1}{2}x^4-x^2\)

\(=\frac{x^3}{2}-\frac{x^2}{2}\)

a) Từ biểu thức rút gọn trên suy ra bậc của B(x) là $3$

b) \(B(\frac{1}{2})=\frac{\frac{1}{2^3}}{2}-\frac{(\frac{1}{2})^2}{2}=-\frac{1}{16}\)

c) \(B=\frac{x^3}{2}-\frac{x^2}{2}=\frac{x^2(x-1)}{2}=\frac{x.x(x-1)}{2}\)

\(x(x-1)\) là tích 2 số nguyên liên tiếp nên \(x(x-1)\vdots 2\)

\(\Rightarrow \frac{x(x-1)}{2}\in\mathbb{Z}\)

\(\Rightarrow B=x.\frac{x(x-1)}{2}\in\mathbb{Z}\)

Ta có đpcm.

6 tháng 4 2018

a) \(x^2y^2-x^2+\left(\dfrac{1}{2}\right)^6x=x^2y^2-x^2+\dfrac{1}{64}x\)

\(\Rightarrow\) đa thức bậc 4

b) \(\left(-9x^2\right)\dfrac{1}{3}y+y\left(-x^2\right)+24x\left(\dfrac{-1}{4}xy\right)\)

\(=-3x^2y-x^2y-6x^2y\)

\(=-10x^2y\)

Thay \(x=1;y=-1\) vào đa thức ta có:

\(-10x^2y=-10.1^2.\left(-1\right)=10\)

P(x)=-5x^3-1/3+8x^4+x^2

Q(x)=x^4-2x^3+x^2-5x-2/3

P(x)+Q(x)

=x^4-2x^3+x^2-5x-2/3+8x^4-5x^3+x^2-1/3

=9x^4-7x^3+2x^2-5x-1

P(x)-Q(x)

=x^4-2x^3+x^2-5x-2/3-8x^4+5x^3-x^2+1/3

=-7x^4+3x^3-5x-1/3

a: \(P\left(-1\right)=3-1+\dfrac{7}{4}=\dfrac{7}{4}+2=\dfrac{15}{4}\)

\(Q\left(\dfrac{1}{2}\right)=-3\cdot\dfrac{1}{4}+2\cdot\dfrac{1}{2}+2=-\dfrac{3}{4}+3=\dfrac{9}{4}\)

b: Đặt P(x)-Q(x)=0

\(\Leftrightarrow3x^2+x+\dfrac{7}{4}=-3x^2+2x+2\)

\(\Leftrightarrow6x^2-x-\dfrac{1}{4}=0\)

\(\Leftrightarrow24x^2-4x-1=0\)

\(\text{Δ}=\left(-4\right)^2-4\cdot24\cdot\left(-1\right)=112>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{4-4\sqrt{7}}{48}=\dfrac{1-\sqrt{7}}{12}\\x_2=\dfrac{1+\sqrt{7}}{12}\end{matrix}\right.\)

a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)

\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)

b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)

\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)

8 tháng 4 2022

a)\(Q\left(x\right)=2x^3+4x^4-6x-5x^2+\dfrac{3}{2}\)

\(P\left(x\right)=2x^2-5x^4-8x+\dfrac{1}{2}\)

a: Đặt A=0

=>-2/3x=5/9

hay x=-5/6

b: Đặt B(x)=0

=>(x-2/5)(x+2/5)=0

=>x=2/5 hoặc x=-2/5

c: Đặt C(X)=0

\(\Leftrightarrow x^3\cdot\dfrac{1}{2}=-\dfrac{4}{27}\)

\(\Leftrightarrow x^3=-\dfrac{8}{27}\)

hay x=-2/3

7 tháng 5 2022

\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)

\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)

vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)

7 tháng 5 2022

thu gọn

\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)

\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)

24 tháng 4 2017

a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)

=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)

=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

__________________________________

P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

_________________________________________

P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

c)Thay x=0 vào đa thức P(x), ta có:

P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)

=0+0-0-0-0

=0

Vậy x=0 là nghiệm của đa thức P(x).

Thay x=0 vào đa thức Q(x), ta có:

Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)

=0+0-0+0-\(\dfrac{1}{4}\)

=0-\(\dfrac{1}{4}\)

=\(\dfrac{-1}{4}\)

Vậy x=0 không phải là nghiệm của đa thức Q(x).

19 tháng 4 2017

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x5−3x2+7x4−9x3+x2−14x

=x5+7x4−9x3−2x2−14x

Q(x)=5x4−x5+x2−2x3+3x2−14

=−x5+5x4−2x3+4x2−14

b) P(x) + Q(x) =

NV
22 tháng 1

\(\dfrac{1}{R\left(x\right)}=\dfrac{1}{x\left(x+2\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)\)

\(\Rightarrow S=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2022}-\dfrac{1}{2024}+\dfrac{1}{2023}-\dfrac{1}{2025}\right)+\dfrac{1}{2.2023}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{2024}-\dfrac{1}{2025}\right)+\dfrac{1}{2.2023}\)

Một kết quả rất xấu