\(x^3+ax^2+bx+c\). Tìm nghiệm của đa thức P(x) biết rằng a+2b+4c=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

Theo đề bài ta có: a+2b+4c=\(\frac{-1}{2}\)

<=>\(\frac{1}{2}\)+a+2b+4c=0

<=>\(\frac{1}{8}\)+\(\frac{a}{4}\)+\(\frac{b}{2}\)+c=0(chia cả 2 vế cho 4)

vậy x=\(\frac{1}{2}\) là nghiệm  của đa thức P(x)

6 tháng 4 2017

Theo bài ra ta có:  a+2b+4c+1/2=0

(cái này là mẹo nhé: Nhận thấy đơn thức c ko có biến x nên ta sẽ lấy 4 làm thừa số chung.)

=>   4(1/4.a + 1/2.b+c+1/8) = 0

<=> 1/4.a + 1/2.b + c + 1/8 = 0

<=> (1/2)^3 + (1/2)^2. a +1/2.b + c =0

<=> P(1/2) = 0

Vậy 1/2 là 1 nghiệm của đa thức P(x)

Nhớ cái mẹo nhé! ^^

14 tháng 8 2018

khó quá tui ko biết làm..

k cho tui nha

thanks

9 tháng 3 2018

tìm no của đa thức f(x)=x3+ax2+bx+c. Biết rằng đa thức có no và a+2b+4c=−12 

no là nghiệm đấy

nghiệm là j =)) 

10 tháng 3 2018

nghiệm là giá trị của biến làm đa thức =0

6 tháng 4 2017

\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)

=> x = 1 và x = 3 là nghiệm của đa thức f(x)

Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)

=> nghiệm của đa thức g(x) là x = { 1; 3 }

Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)

\(\Rightarrow-a+b=2\)(1)

Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)

\(\Rightarrow3a-b=8\)(2)

Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10

=> 2a = 10 => a = 5

=> - 5 + b = 2 => b = 7

Vậy a = 5 ; b = 7

6 tháng 4 2017

(x-1)(x-3)=0

=>x-1=0 hoặc x-3=0

=>x=1 hoặc x=3

Vậy nghiệm của f(x) là 1 và 3

Nghiệm của g(x) cũng là 1 và 3

Với x=1 ta có g(x)=1+a+b-3=0

=>a+b-2=0

a+b=2

Với x=3 ta có g(x)=27-9a+3b-3=0

=>24-9a+3b=0

=>8-3a+b=0

=>3a-b=8

a=\(\frac{8+b}{3}\)

Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)

17 tháng 5 2018

Đa thức  f(x)  có 2 nghiệm là x = 1;  x = -1  nên ta có:

\(f\left(1\right)=1+a+b-2=0\)             \(\Leftrightarrow\)\(a+b=1\)

\(f\left(-1\right)=1+a-b-2=0\)  \(\Leftrightarrow\) \(a-b=1\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b=0\end{cases}}\)

Vậy...

26 tháng 5 2019

Bài 1:

a)Có \(B\left(y\right)=m.\left(-1\right)-3=2\)

\(m.\left(-1\right)\) \(=2+3\)

\(m.\left(-1\right)\) \(=5\)

\(m\) \(=5:\left(-1\right)\)

\(m\) \(=-5\).

b)Có \(-1\) là nghiệm của đa thức D(x).

=>\(D\left(x\right)=\left(-2\right).\left(-1\right)^2+\left(-1\right)a-7a+3=0\)

<=> \(\left(-2\right)-a+7a+3=0\)

<=> \(\left(-2\right)-a+7a=-3\)

<=> \(-a+7a=-2-3\)

<=> \(-a+7a=-5\)

<=> \(\left(-1+7\right)a=-5\)

<=> \(6a=-5\)

<=> a= \(\frac{-5}{6}\)

26 tháng 5 2019

B2;

a)\(x^2+x+1\)

=(\(x^2+0,5x\))+(0,5x+0,25)+0,75

=x(x+0,25)+0,5(x+0,5)+0,75

=\(\left(x+0,5\right)^2\)+0,75.

\(\left(x+0,5\right)^2\ge0\)

=>\(x^2+x+1\) không có nghiệm.

b)\(x^2+2x+2\)

=\(x^2+x+x+1+1\)

=\(\left(x^2+x\right)+\left(x+1\right)+1\)

=\(x\left(x+1\right)+\left(x+1\right)\)

=\(\left(x+1\right)\left(x+1\right)+1\)

=\(\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\)

=> \(x^2+2x+2\) không có nghiệm.

c)\(-x^2+2x-3\)

=\(-\left(x^2-2x+3\right)\)

=\(-\left(x^2-2.x.1+2+1\right)\)

=\(-\left[\left(x-1\right)^2+2\right]\)

=\(-\left(x-1\right)^2-2\)

\(\left(x-1\right)^2\le0\)

=> \(-x^2+2x-3\) không có nghiệm.

29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha