K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2022

a) \(P\left(x\right)=0\Rightarrow x^{2016}-x^{2014}=0\Rightarrow x^{2014}\left(x^2-1\right)=0\)

TH1: \(x^{2014}=0\Rightarrow x=0\)

TH2: \(x^2-1=0\Rightarrow x=\pm1\)

Vậy \(P\left(x\right)\) có nghiệm là \(x=0,x=1,x=-1\)

b) Xét \(x< 0\)

Ta có: \(x^{2016}>0\Rightarrow-x^{2016}< 0\)\(2015x< 0\)

\(\Rightarrow Q\left(x\right)=-x^{2016}+2015x-1< 0\)

Vậy \(Q\left(x\right)\) không có nghiệm âm

12 tháng 5 2022

a, Đặt \(P\left(x\right)=x^{2016}-x^{2014}=0\Leftrightarrow x^{2014}\left(x^2-1\right)=0\Leftrightarrow x=0;x=-1;x=1\)

30 tháng 3 2016

a) Nghiệm bằng 1 nha: 1^2016-1^2014=1-1=0

b)Không có nghiệm âm còn vì sao thì đợi lhi bạn k đug cho mk xog thì mk giải thick cho nha!

x2016-x2014=0

x2014*(x2-1)=0

TH1:

x2014=0

x=0

TH2

x2-1=0

x2=1

x=1

k mình nha

26 tháng 3 2019

Ta có x=2016 => x-1=2015 

Thay vào ta được :

A=x^6 -(x-1)x^5 - (x-1)x^4 -(x-1)x^3 - (x-1)x^2 - (x-1)x -x

 = x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x=0

26 tháng 3 2019

Thay x=2016 vào biểu thức trên ta được:

 \(A=x^6-\left(x-1\right).x^5-\left(x-1\right).x^4-\cdot\left(x-1\right).x^3-\left(x-1\right).x^2-\left(x-1\right).x-x\)

     \(=x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x\)

      \(=0\)

Vậy x=2016 là nghiệm của đa thức .

29 tháng 3 2020

P(x) = x2016 - 2015x2015 - 2015x2014 - ... - 2015x2 - 2015x 

<=> P(x) = x2016 - 2016x2015 + x2015 - 2016x2014 + x2014 - ... - 2016x2 + x2 - 2016x + x 

<=> P(2016) = 20162016 - 2016.20162015 + 20162015 - 2016.20162014 + 20162014 -...- 2016.20162 + 20162 - 2016.2016 + 2016 

<=> P(2016)=20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ... - 20163 + 20162 - 20162 + 2016

<=> P(2016) = 2016

Vậy P(2016) = 2016

29 tháng 3 2020

Ta có:

P(2016) = 20162016 - 2015 . 20162015 - 2015 . 20162014 -.....- 2015 . 20162 - 2015 . 2016 - 1

P(2016) = 20162016 - ( 2016 - 1 ) . 20162015 - ( 2016 -1 ) . 20162014 - ..... - ( 2016 - 1 ) . 20162 - ( 2016 - 1 ) . 2016 - 1

P(2016)= 20162016 - 20162016 + 20162015 - 20162015 + 20162014  - ..... - 20163 + 20162 - 20162 + 2016 - 1

P(2016) = 2016 - 1

P(2016) = 2015.

30 tháng 3 2018

Còn tui

Ta có: \(Q\left(x\right)=P\left(x\right)-H\left(x\right)\)

\(\Leftrightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(\Leftrightarrow H\left(x\right)=1+x+2x^2+...+2015x^{2015}-x^{2015}-x^{2014}-...-x^2-x-1\)

\(\Leftrightarrow H\left(x\right)=2014x^{2015}+2013x^{2014}+2012x^{2013}+...+x^2\)