Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x1,x2 là hai nghiệm của P(x) nên:
\(P\left[x_1\right]=ax^2_1+bx_1+c=0(1)\)
\(P\left[x_2\right]=ax^2_2+bx_2+c=0\)
\(P\left[x_1\right]-P\left[x_2\right]=a\left[x^2_1-x^2_2\right]+b\left[x_1-x_2\right]=0\)
\(a\left[x_1+x_2\right]\left[x_1-x_2\right]+b\left[x_1-x_2\right]=0\)
\(\left[x_1-x_2\right]\left[a\left\{x_1+x_2\right\}+b\right]=0\)
Vì x1 \(\ne\)x2 nên x1 - x2 \(\ne0\), do đó :
\(a\left[x_1+x_2\right]+b=0\Leftrightarrow b=-a\left[x_1+x_2\right](2)\)
Thế 2 vào 1 ta được :
\(ax^2_1-a\left[x_1+x_2\right]\cdot x_1+c=0\Rightarrow c=ax_1\left[x_1+x_2\right]-ax^2_1=ax_1x_2(3)\)
Thế 2 và 3 vào P(x) ta được :
P(x) = \(ax^2+bx+c=ax^2-ax\left[x_1+x_2\right]+ax_1x_2\)
= \(ax^2-axx_1-axx_2+ax_1x_2=a\left[x_2-xx_1-xx_2+x_1x_2\right]\)
= \(a\left[x\left\{x-x_1\right\}-x_2\left\{x-x_1\right\}\right]=a\left[x-x_1\right]\left[x-x_2\right]\)
Vậy P(x) = \(a\left[x-x_1\right]\left[x-x_2\right]\).
\(x_1,x_2\)là hai nghiệm của P(x) nên:
\(P\left(x_1\right)=ax^2_1+bx_1+c=0\)(1)
\(\left(x_2\right)=ax^2_2+bx_2+c=0\)
\(P\left(x_1\right)-P\left(x_2\right)=a\left(x_1^2-x^2_2\right)+b\left(_1^2-x^2_2\right)=0\)
\(a\left(x_1^2+x^2_2\right)\left(x_1^2-x^2_2\right)+b\left(x_1^2-x^2_2\right)=0\)
\(\left(x_1^2-x^2_2\right)\left[a\left(x_1^2+x^2_2\right)+b\right]=0.\)
Vì \(x_1\ne x_2\)nên \(x_1^2-x^2_2=0\)do đó:
\(a\left(x_1^2+x^2_2\right)+b=0\Rightarrow b=-a\left(x_1^2+x^2_2\right)\)(2)
Thế (2) vào (1) ta được:
\(ax^2_1-a\left(x_1^2+x^2_2\right)x_1+c=0\Rightarrow c=ax_1\left(x_1+x_2\right)-ax^2_1=ax_1x_2\)(3)
Thế (2) và (3) vào P(x) ta được:
\(P\left(x\right)=ax^2+bx+c=ax^2-ax\left(x_1+x_2\right)+ax_1x_2\)
\(=ax^2-axx_1-axx_2+ax_1x_2=a\left(x^2-xx_1-xx_2+x_1x_2\right)\)
\(=a\left[x\left(x-x_1\right)-x_2\left(x-x_1\right)\right]=a\left(x-x_1\right)\left(x-x_2\right).\)
Vậy \(P\left(x\right)=a\left(x-x_1\right)\left(x-x_2\right).\)
bài nay đơn giàn thôi bạn chỉ can thay thẳng x=1 vào đa thức P(x) cứ lam theo thế là ra
Cho : a + b + c = 0; f(x) = ax2 + bx + c
Ta có : f(1) = a . 12 + b . 1 + c
= a + b + c = 0
Vậy x = 1 là nghiệm của đa thức f(x)
Với \(x_0\ne0:\)
Nếu \(f\left(x_0\right)=0\Rightarrow ax_0^2+bx_0+c=0\)
Khi đó \(g\left(\frac{1}{x_0}\right)=c\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+b.x_0+ax_0^2}{x^2_0}=0\)
Cho : a - b + c = 0; h(x) = ax2 + bx + c
Ta có : h(-1) = a . (-1)2 + b . (-1) + c
= a - b + c = 0
Vậy x = -1 là nghiệm của đa thức h(x)
Bài 1 : k bt làm
Bài 2 :
Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x
+) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)
\(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)
\(\Leftrightarrow0=7.P\left(2\right)\)
\(\Leftrightarrow P\left(2\right)=0\)
\(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)
+) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)
\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)
\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)
\(\Leftrightarrow P\left(-1\right)=0\)
\(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm
nghiệm của đa thức xác định đa thức đó bằng 0
0 mà k bằng 0. You định làm nên cái nghịch lý ak -.-
a) Giải:
Ta có:
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)
\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)
\(=13a+b+2c=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)
\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)
Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)
b) Sửa đề:
Biết \(5a+b+2c=0\)
Giải:
Ta có:
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)
\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)
\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)
\(=5a+b+2c=0\)
\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)
\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)
Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)
ta có: ax2 + bx +c = 0 vs mọi x
nếu x = 0
=> 0+0+c=0
=> c = 0
nếu x = 1
=> a + b + c =0
=> a + b = 0 ( c = 0) (*)
nếu x = - 1
=> a - b + c = 0
=> a - b =0
Từ (*) => a + b +a-b = 0
=> 2a = 0 => a = 0
=> a + b = 0 => b = 0
=> a = b = c = 0
Ta có P(-1) = a - b + c = 0
Vậy x = -1 là nghiệm của đa thức P(x)