ax2+bx+c và 5a-b+c=0. Chứng tỏ rằng P(-1)....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 3 2020

\(P\left(-1\right)=a-b\) ; \(P\left(-2\right)=4a-2b=5a-3b-a+b=b-a\)

\(\Rightarrow P\left(-1\right).P\left(-2\right)=\left(a-b\right)\left(b-a\right)=-\left(a-b\right)^2\le0\) \(\forall a;b\)

a) GTLN là 2

9 tháng 8 2018

cảm ơn vì câu trả lời của bạn bạn có thể giúp mình câu hỏi dưới đây ko ạ cảm ơn bạn rất nhiều

AH
Akai Haruma
Giáo viên
14 tháng 1 2018

Lời giải:
a)

Ta có: \(2^x-2^y=256=2^8\) (\(\Rightarrow x>y\) )

\(\Leftrightarrow 2^y(2^{x-y}-1)=2^8(*)\)

\(x>y\Rightarrow x-y>0\Rightarrow 2^{x-y}\) chẵn. Do đó \(2^{x-y}-1\) lẻ. Kết hợp với

\((*)\Rightarrow 2^{x-y}-1=1\Leftrightarrow x-y=1\)

Khi đó: \(2^8=2^y(2^{x-y}-1)=2^y(2-1)=2^y\Rightarrow y=8\)

\(\Rightarrow x=y+1=9\)

PT có nghiệm \((x,y)=(9,8)\)

b) Giả sử \(x=y\Rightarrow 3^x+3^y= 2.3^x=3\vdots 2\) (vô lý). Do đó \(x\neq y\)

Không mất tính tổng quát giả sử \(x> y\).

PT tương đương: \(3^y(3^{x-y}+1)=3\) \((**)\)

\(x>y\Rightarrow x-y\geq 1\Rightarrow 3^{x-y}\vdots 3\)

\(\Rightarrow 3^{x-y}+1\not\vdots 3\). Kết hợp với \((**)\Rightarrow 3^{x-y}+1=1\Leftrightarrow 3^{x-y}=0\) (vl)

Do đó PT vô nghiệm.

AH
Akai Haruma
Giáo viên
14 tháng 1 2018

Câu c)

\((x-2)^2=3\Leftrightarrow \) \(\left[{}\begin{matrix}x-2=\sqrt{3}\\x-2=-\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow \)\(\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)

Câu d)

Nếu \(y=0\Rightarrow 2007^x=2000-2008^0=1999\Rightarrow x\not\in\mathbb{N}\)

Nếu \(y\geq 1.\)Ta thấy với mọi số tự nhiên \(x\in\mathbb{N}\Rightarrow 2007^x\) lẻ và \(2008^y\) chẵn

\(\Rightarrow 2007^x+2008^y\) lẻ. Mà 2000 là số chẵn, do đó pt vô nghiệm.

9 tháng 8 2018

x = 0

9 tháng 8 2018

bạn có thể giúp mình nhữngcâu sau được ko ạ????cảm ơn bạn rất nhiều

26 tháng 12 2018

???

26 tháng 12 2018

có t trl nè :vvv

Câu 1:

a)

Ta có: \(P\left(x\right)=5x^4+3x^3-6x+x^2-5x^4+2x+8\)

\(=3x^3+x^2-4x+8\)

Ta có: \(Q\left(x\right)=2x^2-3x^3+12-3x^2+6x^3-4\)

\(=-3x^3-x^2+8\)

b) Ta có: P(x)+Q(x)

\(=3x^3+x^2-4x+8-3x^3-x^2+8\)

\(=-4x+16\)

Ta có: H(x)+P(x)=Q(x)

⇔H(x)=Q(x)-P(x)

\(\Leftrightarrow H\left(x\right)=-3x^3-x^2+8-\left(3x^3+x^2-4x+8\right)\)

\(\Leftrightarrow H\left(x\right)=-3x^3-x^2+8-3x^3-x^2+4x-8\)

\(\Leftrightarrow H\left(x\right)=-6x^3-2x^2+4x\)

c) Đặt H(x)=0

\(\Leftrightarrow-6x^3-2x^2+4x=0\)

\(\Leftrightarrow x\left(-6x^2-2x+4\right)=0\)

\(\Leftrightarrow x\left(-6x^2-6x+4x+4\right)=0\)

\(\Leftrightarrow x\left[-6x\left(x+1\right)+4\left(x+1\right)\right]=0\)

\(\Leftrightarrow x\cdot\left(x+1\right)\cdot\left(-6x+4\right)=0\)

\(\Leftrightarrow-2\cdot\left(3x-2\right)\cdot x\cdot\left(x+1\right)=0\)

\(-2\ne0\)

nên \(\left[{}\begin{matrix}3x-2=0\\x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=0\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=0\\x=-1\end{matrix}\right.\)

Vậy: Nghiệm của đa thức H(x) lần lượt là 0;-1;\(\frac{2}{3}\)

Câu 2: Sửa đề: \(C=4x^2+7xy-3y^2\)

Ta có: A+B+C

=\(7x^2-12xy+9y^2+5-10x^2+7xy-5y^2+4x^2+7xy-3y^2\)

\(=x^2+2xy+y^2+5\)

\(=\left(x+y\right)^2+5>0\forall x,y\)(đpcm)

2 tháng 6 2020

Bạn ơi bên trên mik viết nhầm câu 2 phần C = 4x\(^2\) + 7xy + 5y\(^2\)

28 tháng 5 2018

ta có: 2a + b  = 0

\(\Rightarrow2a=-b\Rightarrow a=\frac{-b}{2}\)

ta có: \(P_{\left(-1\right)}=a.\left(-1\right)^2+b.\left(-1\right)+c\)

\(P_{\left(-1\right)}=a-b+c\)

thay số: \(P_{\left(-1\right)}=\frac{-b}{2}-b+c\)

\(P_{\left(-1\right)}=\frac{-b}{2}-\frac{2b}{2}+c=\frac{-b-2b}{2}+c\)

\(P_{\left(-1\right)}=\frac{-3b}{2}+c\)

ta có: \(P_{\left(3\right)}=a.3^2+b.3+c\)

\(P_{\left(3\right)}=a9+3b+c\)

thay số: \(P_{\left(3\right)}=\frac{-b}{2}.9+3b+c\)

\(P_{\left(3\right)}=\frac{-9b}{2}+\frac{6b}{2}+c\)

\(P_{\left(3\right)}=\frac{-9b+6b}{2}+c\)

\(P_{\left(3\right)}=\frac{-3b}{2}+c\)

\(\Rightarrow P_{\left(-1\right)}.P_{\left(3\right)}=\left(\frac{-3b}{2}+c\right).\left(\frac{-3b}{2}+c\right)\)

\(P_{\left(-1\right)}.P_{\left(3\right)}=\left(\frac{-3b}{2}+c\right)^2\ge0\)

\(\Rightarrow P_{\left(-1\right)}.P_{\left(3\right)}\ge0\left(đpcm\right)\)

28 tháng 5 2018

Ta có : 

\(P\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(3\right)=a.3^2+b.3+c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=\left(9a+3b+c\right)-\left(a-b+c\right)\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=9a+3b+c-a+b-c\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=8a+4b\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=4\left(2a+b\right)\)

Mà \(2a+b=0\Rightarrow4\left(2a+b\right)=0\Rightarrow P\left(3\right)-P\left(-1\right)=0\Rightarrow P\left(3\right)=P\left(-1\right)\)

Nên : 

\(P\left(3\right).P\left(-1\right)=P\left(-1\right).P\left(-1\right)=\left[P\left(-1\right)\right]^2\ge0\)

\(\Rightarrow P\left(3\right).P\left(-1\right)\ge0\left(Đpcm\right)\)

P/s : Đúng nha