\(^2\)+ bx  + c

a) Tính P(-1).P(-2)

b) Cho0 5a - 3b +2c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

a) P(x) = ax2 + bx + c

P(-1) = a.(-1)2 + b.(-1) + c = a - b + c

P(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c

b) Ta có : P(-1) + P(-2) = a - b + c + 4a - 2b + c = 5a - 3b + 2c 

Mà 5a - 3b + 2c = 0 ( theo đề bài )

=> P(-1) + P(-2) = 0 

=> P(-1) = -P(-2) ( hai số đối nhau )

=> P(-1) . -P(-2) \(\le\)0 ( đpcm ) 

23 tháng 6 2020

b) Có thể xảy ra trường hợp P(-1) = -P(-2) = 0 nên = 0 nhé 

Bình thường hai số đối nhân với nhau < 0 mà :)

27 tháng 5 2016

a,Q(2) = 4a+2b+c

Q(-1)=a-b+c

Ta có: Q(2)+Q(-1)= 4a+2b+c+a-b+c=5a+b+2c

mà 5a+b+2c=0 => Q(2)=-Q(-1)

Nên Q(2).Q(-1)\(\le\)0

 

28 tháng 5 2016

Vì Q(x)=0 với mọi x nên ta có:

Q(0)= 0.a+b.0+c=0=> c=0(1)

Q(1)= a+b+c=0 mà c=0 => a+b=0(2)

Q(-1)=a-b+c=0 mà c=0 => a-b=0(3)

từ (1) và (2) => a=b=c=0 khi Q(x)=0 với mọi x

4 tháng 5 2017

Ta có: P(-1) = a-b+c

P(-2) = 4a-2b+c

=> P(-1)+P(-2) = 5a-3b+2c = 0

=> P(-1) = P(2)

=> P(-1).P(-2) = P(2).P(-2) = - [P(2)]2 \(\le\)0

Vậy P(-1).P(-2) \(\le\)0

4 tháng 5 2017

...

=> ...

=> P(-1) = - P(-2)

=> P(-1).P(-2) = - P2(-2) \(\le\)0 vì P2(-2) \(\ge\)0

=> P(-1).P(-2) \(\ge\)0

Câu trả lời này mới đúng , vừa nãy mk nhầm tưởng là nhỏ hơn hoặc bằng, sau đó mk nhìn lại đề bài nên mk sửa

a) Ta có : \(Q\left(2\right)=4a+2b+c\)

\(Q\left(-1\right)=a-b+c\)

\(\Rightarrow Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)

\(\Rightarrow Q\left(2\right)=-Q\left(-1\right)\)

\(\Rightarrow Q\left(2\right).Q\left(-1\right)\le0\)

b) Vì \(Q\left(x\right)=0\) với mọi $x$

$\to Q(0) = c=0$

$Q(1) = a+b+c=a+b=0$ $(1)$

$Q(-1) = a-b +c = a-b=0$ $(2)$

Từ $(1)$ và $(2)$ $\to a=b=c=0$

3 tháng 4 2017

Q(2)=a.22+b.2+c=a.4+b.2+c

Q(-1)=a.(-1)2+b.(-1)+c=a-b+c

Ta có Q(2)+Q(-1)=4a+2b+c+a-b+c=5a+b+2c=0

Như vậy Q(2) và Q(-1) là 2 số đối nhau

=> Tích của chúng luôn nhỏ hơn hoặc bằng 0 ( Bằng 0 khi cả 2 số đều bằng 0)

b) Q(x)=0 với mọi x

=>Q(0)=a.02+b.0+c=0

=>0+0+c=0

=>c=0

Q(1)=a.12+b.1+c=a+b+c=0

Theo câu a, ta có Q(-1)=a-b+c=0 ( vì giả thiết cho đa thức =0 với mọi x)

=>Q(1)-Q(-1)=a+b+c-(a-b+c)=a+b+c-a+b-c=0

=>2b=0

=>b=0

Thay b=0 và c=0 vào đa thức Q(1) ta có a+0+0=0

=>a=0

Vậy a=b=c=0

7 tháng 5 2015

Tính H(-1) = a.(-1)2 + b.(-1) + c = a - b + c

H(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c

=> H(-1) + H(-2) = 5a - 3b + 2c = 0 

=> H(-1) = - H(-2)

=> H(-1) . H(-2) = [- H(-2)].h(-2) = - H2(-2) \(\le\) 0 Vì H2(-2) \(\ge\) 0

=> ĐPCM

29 tháng 6 2020

Ta có \(H\left(-1\right)=a-b+c;H\left(-2\right)=4a-2b+c\)

\(\Rightarrow H\left(-1\right)+H\left(-2\right)=a-b+c+4a-2b+c=5a-3b+2c=0\left(1\right)\)

\(\Rightarrow H\left(-1\right)=-H\left(-2\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow H\left(-1\right)\cdot H\left(-2\right)=-H\left(-2\right)\cdot H\left(-2\right)=-\left[H\left(-2\right)\right]^2=\le0\)

2 tháng 5 2017

A(-1) = a.(-1)2 + b.(-1) + c = a - b + c

A(2) = a.22 + b.2 + c = 4a + 2b + c

=> A(-1) + A(2) = a - b + c + 4a + 2b + c = 5a + b + 2c = 0

hay A(-1) + A(2) = 0

=> A(-1) = -A(2)

Ta có : A(-1).A(2) = -A(2).A(2) = -A2(2) \(\le0\) vì A2(2) \(\ge0\)

Vậy ..... đpcm .

30 tháng 4 2020

a) \(P\left(-1\right)=a-b+c\)

\(P\left(-2\right)=4a-2b+c\)

b) \(P\left(-1\right)+P\left(-2\right)=5a-3b+2c=0\)

=> P ( - 1) = -P(-2) 

=> P( -1 ) . P (-2) \(=-\left[P\left(-2\right)\right]^2\le0\)

30 tháng 4 2020

a) \(\text{P}\left(-1\right)=\text{a}+\text{b}+\text{c}\)

\(\text{P}\left(-2\right)=4\text{a}-2\text{b}+\text{c} \)

b) \(\text{P}\left(-1\right)+\text{P}\left(-2\right)=5\text{a}+3\text{b}+2\text{c}=0\)

\(\Rightarrow\text{ P}\left(-1\right)=\text{P}\left(-2\right)\)

\(\Rightarrow\text{ P}\left(-1\right).\text{ P}\left(-2\right)=\left[\text{P}\left(-2\right)\right]^2\le0\)

27 tháng 3 2018

\(P\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a-b+c\)

\(P\left(-2\right)=a\left(-2\right)^2+b\left(-2\right)+c=4a-2b+c\)

\(\Rightarrow P\left(-1\right)+P\left(-2\right)=5a-3b+2c=0\)

\(\Rightarrow P\left(-1\right)=P\left(-2\right)\)

\(\Rightarrow P\left(-1\right)\cdot P\left(-2\right)=-P^2\left(-2\right)\le0\) \(vì\) \(P^2\left(-2\right)\ge0\)

\(\RightarrowĐPCM\)

6 tháng 3 2020

\(P\left(x\right)=ax^2+bx\)

\(\Rightarrow P\left(-1\right)=a-b\)

và \(P\left(-2\right)=4a-2b\)

\(\Rightarrow P\left(-1\right)+P\left(-2\right)=5a-3b=0\)

\(\Rightarrow P\left(-1\right)\)và \(P\left(-2\right)\)trái dấu hoặc cùng bằng 0

\(\Rightarrow P\left(-1\right)\)\(.P\left(-2\right)\le0\)(đpcm)