Cho đa thức p(x)= 48x4 - 28x3 - 24x2

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\)

\(=\left(x+y\right)^2:\left(x+y\right)\)

\(=x+y\)

b) \(\left(125x^3+1\right):\left(5x+1\right)\)

\(=\left(5x+1\right)\left(25x^2-5x+1\right):\left(5x+1\right)\) 

\(=25x^2-5x+1\)

c) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)

\(=\left(x-y\right)^2:\left(y-x\right)\)

\(=\left(y-x\right)^2:\left(y-x\right)\)

\(=y-x\)

24 tháng 12 2020

a, \(\frac{x+1}{2x+6}=\frac{x+1}{2\left(x+3\right)}\)

b, \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)

\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2x+6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)

c, \(\frac{x-x-2xy+x}{x+2y}+\frac{4xy}{4y^2-x^2}=\frac{x-2xy}{x+2y}+\frac{4xy}{\left(2y-x\right)\left(x+2y\right)}\)

\(=\frac{\left(x-2xy\right)\left(2y-x\right)}{\left(x+2y\right)\left(2y-x\right)}+\frac{4xy}{\left(2y-x\right)\left(x+2y\right)}=\frac{2xy-x^2+4xy^2+2x^2y}{\left(2y-x\right)\left(x+2y\right)}\)

23 tháng 6 2017

a)(2x2+1)(3x3-2x2+3

= 6x5-4x4+6x2+3x3-2x2+3

= 6x5-4x4+3x3+4x2+3

b)(-3x+1)(4x4-x³+x)

= -12x5+3x4-3x2+4x4-x³+x

= -12x5+7x4-x3-3x2+x

30 tháng 8 2018

\(\frac{x^7+x^2+1}{x^2+x+1}=\frac{x^2\cdot\left(1+x^5\right)+1}{x\cdot\left(x+1\right)+1}=\frac{x+x^6+1}{x+1+1}=\frac{x+1+1-1+x^6}{x+1+1}=1-\frac{1+x^6}{x+1+1}\)

10 tháng 9 2016

(3x3-2x2=5):(x2-1) bằng 3x-2 và dư 3(x+1)

16 tháng 12 2020

Bài 1.

a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)

b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)

\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)

c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)

Bài 3.

N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )

= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )

= 14x2 + 12x + 9 - 5x2 + 20

= 9x2 + 12x + 29

= 9( x2 + 4/3x + 4/9 ) + 25

= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x 

=> đpcm