Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vào đây xem thử
Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến
Đặt \(f\left(x\right)=10x\)
Khi đó ta có \(f\left(1\right)=10=P\left(1\right)\), \(f\left(2\right)=20=P\left(2\right)\), \(f\left(3\right)=30=P\left(3\right)\)
Do đó \(P\left(x\right)-f\left(x\right)=g\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
\(\Rightarrow P\left(x\right)=10+g\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
Vì \(P\left(x\right)\)là đa thức bậc 4 mà \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\)là đa thức bậc 3 nên \(g\left(x\right)\)là đa thức bậc 1 hay \(g\left(x\right)=x+n\)
Vậy \(P\left(x\right)=\left(x+n\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)+10\)
\(\Rightarrow P\left(12\right)=\left(12+n\right)\left(12-1\right)\left(12-2\right)\left(12-3\right)=\left(n+12\right).11.10.9=990\left(n+12\right)\)
\(=990n+11880\)
Và \(P\left(-8\right)=\left(-8+n\right)\left(-8-1\right)\left(-8-2\right)\left(-8-3\right)=\left(n-8\right)\left(-9\right)\left(-10\right)\left(-11\right)\)\(=-990\left(n-8\right)=-990n+7920\)
Vậy \(\frac{P\left(12\right)+P\left(-8\right)}{10}+25=\frac{990n+11880-990n+7920}{10}+25=\frac{19800}{10}+25=2005\)
\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)
\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\)
Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\) với mọi x nguyên
\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên
Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)
\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)
Cám ơn thầy Lâm ạ, ôi nhưng đây quả là bài toán khá hóc búa thầy ạ
Lời giải:
Theo định lý Bê-du về phép chia đa thức, số dư của $P(x)$ khi chia $2x-5$ là $P(\frac{5}{2})=\frac{5}{4}(\frac{5}{2})^3+\frac{5}{6}(\frac{5}{2})^2-\frac{21}{4}.\frac{5}{2}+\frac{1}{6}=\frac{377}{32}$
\(f\left(x\right)=ax^2+bx+2020\\ \Leftrightarrow f\left(\sqrt{3}-1\right)=a\left(4-2\sqrt{3}\right)+b\left(\sqrt{3}-1\right)+2020=2021\\ \Leftrightarrow4a-2a\sqrt{3}+b\sqrt{3}-b-1=0\\ \Leftrightarrow\left(4a-b-1\right)-\sqrt{3}\left(2a-b\right)=0\\ \Leftrightarrow4a-b-1=\sqrt{3}\left(2a-b\right)\)
Vì a,b hữu tỉ nên \(4a-b-1;2a-b\) hữu tỉ
Mà \(\sqrt{3}\) vô tỉ nên \(\sqrt{3}\left(2a-b\right)\) hữu tỉ khi \(2a-b=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a-b-1=0\\2a-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(1+\sqrt{3}\right)=\dfrac{1}{2}\left(4+2\sqrt{3}\right)+1+\sqrt{3}+2020=2023+2\sqrt{3}\)