Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
a) x(5x - 3) - x2(x - 1) + x(x2 - 6x) - 10 + 3x
=5x2-3x-x3+x2+x3-6x2-10+3x
=(5x2-6x2+x2)+(-3x+3x)-(x3-x3)-10
=-10
b) x(x2+ x + 1) - x2(x +1) - x +5
=x3+x2+x-x3-x2-x+5
=(x3-x3)+(x2-x2)+(x-x)+5
=5
a2 + b2 + c= ab + ac + bc
=> 2a2 + 2b2 + 2c2= 2ab + 2ac + 2bc
=> ( a2 - 2ab + b2) + ( a2 - 2ac + c2) + ( b2 - 2bc + c2)=0
=> ( a - b)2 + ( a - c)2 + ( b - c)2 =0
Vì ( a - b)2 >= 0
( a - c)2>= 0
( b - c)2>=0
=> Để ( a - b)2 + ( a - c)2 + ( b - c)2 =0 thì a - b =0 ; a - c=0; b-c=0
=> a=b=c
=> Tam giác đó là tam giác đều
Để phân thức \(A=\frac{x^2+5x+4}{x^2+x-12}\) không xác định thì \(x^2+x+12=0\)
\(\Rightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}-12,25=0\)
\(\left(x+\frac{1}{2}\right)^2=12,25\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=\frac{7}{2}\\x+\frac{1}{2}=-\frac{7}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=-4\end{array}\right.\)
Vậy \(x=3;-4\)
Ta thấy: Phân thức A không xác định được khi mẫu số của phân thức bằng 0, tức là:
\(x^2-x-56=0\\ \Rightarrow x\left(x-1\right)=8\cdot7=-7\cdot-8\\ \Rightarrow x=8;-7\)
Vậy tập hợp các giá trị của x để phân thức A không xác định là {8; -7}
ta có
\(P\left(x\right)=x^4-4x^3+4x^2-\left(x^2-2x+1\right)=\left(x^2-2x\right)^2-\left(x-1\right)^2\)
\(\left(x^2-3x+1\right)\left(x^2-x-1\right)=0\)
theo nguyên lí vi-et ta có \(\hept{\begin{cases}a+b=1\\a.b=-1\end{cases}}\)Vậy ab=-1