\(P\left(x\right)=x^3-x\) và \(Q\left(x\right)=x^{81}+x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2020

a)

Gọi đa thức dư là A(x)

Vì đa thức dư P(x) có bậc là 3

nên đa thức dư có bậc không quá 2

hay đa thức dư có dạng là \(ax^2+bx+c\)

Ta có: Q(x)=\(A\left(x\right)\cdot\left(x-1\right)\cdot x\cdot\left(x+1\right)+ax^2+bx+c\)

Với x=1 thì a+b+c=6(1)

Với x=-1 thì a-b+c=-4(2)

Với x=0 thì  c=1

Thay c=1 vào (1), (2), ta được:

a+b=5 và a-b=-5

\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\5-b-b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\-2b=-5-5=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-5=0\\b=5\end{matrix}\right.\)

Vậy: đa thức dư có dạng là 5x+1

b) Để Q(x) chia hết cho P(x) thì 5x+1=0

\(\Leftrightarrow5x=-1\)

hay \(x=-\dfrac{1}{5}\)

NM
15 tháng 8 2021

a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)

Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay

\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)

b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1  và 2 hay

\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)

22 tháng 10 2019

2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1

Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)

                              \(\Leftrightarrow a=-1\)

Vậy ...

15 tháng 10 2017

a)ta có:

\(f\left(x\right):\left(x+1\right)\: dư\: 6\Rightarrow f\left(x\right)-6⋮\left(x+1\right)\\ hay\: 1-a+b-6=0\\ \Leftrightarrow b-a-5=0\Leftrightarrow b-a=5\left(1\right)\)

tương tự: \(2^2+2a+b-3=0\\ 2a+b=-1\left(2\right)\)

từ (1) và(2) => \(\left\{{}\begin{matrix}b-a=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)

15 tháng 10 2017

Câu a :

Theo đề bài ta có hệ phương trình :

\(\left\{{}\begin{matrix}f\left(-1\right)=1-a+b=6\\f\left(2\right)=4+2a+b=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)

Vậy đa thức \(f\left(x\right)=x^2-2x+3\)

26 tháng 11 2019

Bài 1 : 

Gọi f( x )  = 2n2 + n - 7

       g( x ) = n - 2

Cho g( x )  = 0

\(\Leftrightarrow\)n - 2 = 0

\(\Rightarrow\)n      = 2

\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7

\(\Rightarrow\)f( 2 )  = 3

Để f( x ) \(⋮\)g( x )

\(\Rightarrow\)n - 2 \(\in\)Ư( 3 )  = { \(\pm\)1 ; \(\pm\)3 }

Ta lập bảng :

n - 21- 13- 3
n315- 1

Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }

26 tháng 11 2019

2n^2+n-7 n-2 2n+6 2n^2-4n 6n-7 6n-12 5

Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)

Làm nốt

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:

Vì $f(x)$ chia $x-3$ dư $2$, $f(x)$ chia $x+4$ dư $9$ nên $f(3)=2; f(-4)=9$

Giả sử $f(x)$ chia $x^2+x-12$ được đa thức dư là $ax+b$

Khi đó: $f(x)=(x^2+x-12)(x^2+3)+ax+b$

$f(3)=(3^2+3-12)(3^2+3)+3a+b$

$\Leftrightarrow 2=3a+b(1)$

$f(-4)=[(-4)^2-4-12][(-4)^2+3)]-4a+b$

$\Leftrightarrow 9=-4a+b(2)$

Từ $(1);(2)\Rightarrow a=-1; b=5$

$f(x)=(x^2+x-12)(x^2+3)-x+5=x^4+x^3-9x^2+2x-31$

NV
2 tháng 1 2019

\(f\left(x\right)\) chia \(x+1\) dư 4 \(\Rightarrow f\left(x\right)=\left(x+1\right).P\left(x\right)+4\)

\(f\left(-1\right)=\left(-1+1\right)P\left(x\right)+4=4\)

Do \(\left(x+1\right)\left(x^2+1\right)\) là đa thức bậc 3 \(\Rightarrow\) phần dư của phép chia \(f\left(x\right)\) cho \(\left(x+1\right)\left(x^2+1\right)\) là bậc 2 có dạng \(ax^2+bx+c\)

\(\Rightarrow f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+ax^2+bx+c\)(1)

\(f\left(-1\right)=a-b+c=4\) (2)

Biến đổi biểu thức (1):

\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)

\(f\left(x\right)=\left(x^2+1\right)\left[\left(x+1\right).Q\left(x\right)+a\right]+bx+c-a\)

\(\Rightarrow f\left(x\right)\) chia \(x^2+1\)\(bx+c-a\)

\(\Rightarrow bx+c-a=2x+3\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)

Kết hợp (2) ta được: \(\left\{{}\begin{matrix}b=2\\c-a=3\\a-b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=2\\c=\dfrac{9}{2}\end{matrix}\right.\)

Vậy phần dư cần tìm là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)

2 tháng 1 2019

Theo Bơdu, ta có:

\(f\left(x\right):\left(x+1\right)\) dư 4

\(\Rightarrow f\left(-1\right)=4\)

Vì đa thức chia \(\left(x+1\right)\left(x^2+1\right)\) có bậc 3 nên đa thức dư có bậc \(\le2\). Đặt đa thức dư có dạng \(ax^2+bx+c\)

Gọi \(P\left(x\right)\) là đa thức thương. Ta có:

\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+bx+c\)

\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+a-a+bx+c\)

\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+a\left(x^2+1\right)+bx+c-a\)

\(=\left(x^2+1\right)\left[P\left(x\right).\left(x+1\right)+a\right]+bx-a+c\)

\(f\left(x\right):\left(x^2+1\right)\)\(2x+3\)

\(\Rightarrow bx+c-a=2x+3\)

\(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)

Lại có: \(f\left(-1\right)=ax^2+bx+c=4\)

\(\Leftrightarrow a-b+c=4\Leftrightarrow a+c-2=4\)

\(\Leftrightarrow a+c=6\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=\dfrac{9}{2}\end{matrix}\right.\)

Vậy đa thức dư là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)