K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Có P(1) = a+b+c
P(-1) = a - b + c
Vì P(1) = P(-1) => a+b+c = a-b+c
=> b = -b
Lại có: P(-x)= \(ax^2-bx+c\)
\(P\left(x\right)=ax^2+bx+c\)
Mà b = -b (cmt)
=> bx = -bx
=> \(ax^2-bx+c\) = \(ax^2+bx+c\)
Hay P(x) = P(-x)

1 tháng 8 2021

P(x)=\(ax^2+bx+c\) (1)(a\(\ne0\) )

Ta có : 

\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)\(\Rightarrow\left\{{}\begin{matrix}b=2a\\c=3a\end{matrix}\right.\)(2)

Thay(2) vào (1)\(\Rightarrow P\left(x\right)=ax^2+2ax+3a\)

\(\Rightarrow\dfrac{P\left(-2\right)-3P\left(-1\right)}{a}=\dfrac{4a-4a+3a-3\left(a-2a+3a\right)}{a}\)=\(\dfrac{3a-3a+6a-9a}{a}=\dfrac{-3a}{a}=-3\)

22 tháng 2 2020

\(f\left(-1\right)=a\left(-1\right)^2+b.\left(-1\right)+c\)

\(=a-b+c\)

\(f\left(2\right)=a.2^2+b.2+c\)

\(=4a+2b+c\)

\(\Rightarrow f\left(2\right)-2.f\left(-1\right)=\left(4a+2b+c\right)-2\left(a-b+c\right)\)

\(=2a+4b-c=0\)

\(\Rightarrow f\left(2\right)=2.f\left(-1\right)\)

\(\Rightarrow f\left(2\right)\)và \(2.f\left(-1\right)\)cùng dấu

\(\Rightarrow f\left(2\right)\)và \(f\left(-1\right)\)cùng dấu

\(\Rightarrow f\left(2\right).f\left(-1\right)\ge0\)(đpcm)

22 tháng 2 2020

Ta có :\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)

               \(f\left(2\right)=a.2^2+b.2+c=4a+2b+c\)

\(\implies\) \(f\left(2\right)-2f\left(-1\right)=\left(4a+2b+c\right)-2.\left(a-b+c\right)\)

\(\implies\)  \(f\left(2\right)=2.f\left(-1\right)\)

\(\implies\)  \(f\left(-1\right).f\left(2\right)=f\left(-1\right).2f\left(-1\right)=f\left(-1\right)^2.2\) \(\geq\) \(0\)

\(\implies\)  \(f\left(-1\right).f\left(2\right)\) \(\geq\)  \(0\) \(\left(đpcm\right)\)