K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Cách giải bài này :

Vì Q(x) chia hết cho 5 với mọi x nguyên, nên em chọn 1 số giá trị thích hợp của x để đưa đến các pt nhiều ẩn

Ví dụ Q(0) = d chia hết cho 5; Q(1) = a +b +c +d, vì d chia hết cho 5 => a +b +c chia hết cho 5 (1)

Q(-1) = -a +b -c +d, vì d chia hết cho 5 => -a +b -c chia hết cho 5 (2)

Cộng từ vế (1) và (2) đc 2b chia hết cho 5 => b chia hết cho 5 vì (2,5) = 1

Trừ từng vế (1) và (2) ....

Em tính thêm Q(3) nữa là đc

11 tháng 3 2017

787586

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

24 tháng 2 2021

Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)

 Trừ từng vế của (2) cho (3) ta được:

\(\Rightarrow2b=2\Rightarrow b=1\)

Thay b=1 vào lần lượt (1) ,(2),(3) ta được:

\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)

Trừ từng vế của (4) cho (5) ta được:

\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...

21 tháng 4 2019

Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )

Khi đó ta có pt :

\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)

\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)

Vì pt trên đúng với mọi x nên :

+) đặt \(x=1\)

\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)

\(\Leftrightarrow-7+a+b+c=0\)

\(\Leftrightarrow a+b+c=7\)(1)

Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :

\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)

Từ (1) và (2) ta có hệ pt 3 ẩn :

\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)

Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)

Vậy....

30 tháng 8 2017

Vì P(x) \(⋮\) 5 với \(\forall\) x

=> P(0) \(⋮\) 5 mà P(0) = c => c \(⋮\)5

P(1) \(⋮\) 5 mà P(1) = a+b+c => a+b \(⋮\) 5 (1)

P(-1) \(⋮\) 5 mà P(-1) = a-b+c => a-b \(⋮\) 5 (2)

Từ (1) và (2) suy ra (a+b) + (a-b) \(⋮\) 5

=> 2a \(⋮\) 5 => a \(⋮\) 5

mà a+b \(⋮\) 5 => b \(⋮\) 5

Vậy..

24 tháng 5 2020

Nguyễn Lê Phước Thịnh White Hold HangBich2001 Phạm Vũ Trí Dũng Nguyễn Huyền Trâm