Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^2\ge0\).Với mọi x \(\in\)I
\(\Rightarrow M\left(x\right)\ge0+1=1\)
Mà để M(x) có nghiệm thì M(x) phải bằng 0
=>M(x) vô nghiệm
M(x) = 0 => 3x4 + x2 + 4 = 0 (thay đa thức bằng 0)
=> 3x4 + x2 = -4
mà 3x4 \(\ge\)0
x2 \(\ge\) 0
nên suy ra: 3x4 + x2 \(\ge\) 0
=> x không tồn tại hay đa thức M ko có nghiệm (vô nghiệm)
x4 ≥0 với mọi x
x2 ≥0 với mọi x
⇒ x4+ x2 ≥ 0
⇒ x4 +x2 +1>1
⇒Đa thức trên vô nghiệm
.
Truong hop \(x=3\):
\(M\left(3\right)=\left(3\right)^2-4.3+3=0\Leftrightarrow x=3\) la nghiem cua da thuc \(M\left(x\right)\)(dpcm)
Truong hop \(x=-1\):
\(M\left(-1\right)=\left(-1\right)^2-4\left(-1\right)+3=9\Leftrightarrow x=-1\) khong la nghiem cua da thuc \(M\left(x\right)\)(dpcm)
Dễ mà bạn!
a)
M(x)= 5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3
M(x)= 2x^4-x^4+5x^3-4x^3-x^3-3x^2-x^2+1
M(x)= x^4+2x^2+1
b)
M(x)= x^4+2x^2+1
M(1)= 1^4+2.1^2+1
M(1)= 1+2+1
M(1)= 4
M(-1)= (-1)^4+2.(-1)^2+1
M(-1)= 1+2+1
M(-1)= 4
c) Vì x^4+2x^2+1 >= 1
Nên M(x)= x^4+2x^2+1 không có nghiệm
* M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3
= ( 2x4 - x4 ) + ( 5x3 - x3 - 4x3 ) + ( 3x2 - x2 ) + 1
= x4 + 2x2 + 1
* M(1) = 14 + 2 .12 + 1 = 1 + 2 . 1 + 1 = 4
M(-1) = (-1)4 + 2. (-1)2 + 1 = 1 + 2.1 + 1 = 4
* Ta có \(x^4\ge0\forall x,x^2\ge0\forall x\Rightarrow x^4+x^2+1\ge1>0\)
=> M(x) vô nghiệm
TA CÓ
\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)
\(=1-2+1=0\)
vậy ......
TA CÓ
\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)
vậy..............
Thay \(x=\frac{1}{2}\)vào P (x) ta có:
\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)
\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)
\(P\left(\frac{1}{2}\right)=1-2+1\)
\(P\left(\frac{1}{2}\right)=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)
a)
- Để P(y)=0
\(\Leftrightarrow3y-6=0\)
\(\Leftrightarrow3y=6\)
\(\Leftrightarrow y=2\)
Vậy P(y) có nghiệm là 2
- Để M(x)=0
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Rightarrow x\in\){2;-2}
Vậy M(x) có nghiệm là 2 và -2
b)
Ta có:
\(x^4\ge0\)
\(\Rightarrow x^4+1\ge1>0\)
\(\Rightarrow Q\left(x\right)>0\)
\(\Rightarrow Q\left(x\right)\ne0\)
Vậy Q(x) vô nghiệm
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
\(x^2\ge0\Rightarrow x^2+1\ge1>0\)
=> \(M\left(x\right)=x^2+1\) vô nghiệm