Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
\(\left(x+1\right)^2\left(y-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\y-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\y-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0-1=-1\\y=0+6=6\end{matrix}\right.\)
Vậy: biểu thức trên bằng 0 khi có x = -1 hoặc y = 6
Bài 5:
\(P=3x^4+5x^2y^2+2x^4+2y^2\)
\(=3x^2x^2+3x^2y^2+2x^2y^2+2x^4+2y^2\)
\(=3x^2\left(x^2+y^2\right)+2x^2\left(y^2+x^2\right)+2y^2\)
\(=3x^22+2x^22+2y^2\)
\(=6x^2+4x^2+2y^2\)
\(=10x^2+2y^2\)
P/s: Hình như đề câu cuối bị nhầm thì phải!
\(a)\) Ta có :
\(x^2+x=0\)
\(\Leftrightarrow\)\(x\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
Vậy nghiệm của đa thức \(H\left(x\right)=x^2+x\) là \(x=-1\) hoặc \(x=0\)
\(b)\) Ta có :
\(\left|x\right|\ge0\)
\(\Rightarrow\)\(\left|x\right|+1\ge0+1=1>0\)
Vậy đa thức \(Q\left(x\right)=\left|x\right|+1\) vô nghiệm ( hoặc không có nghiệm )
Chúc bạn học tốt ~
1/a/Cho x^2+x=0
x(x+1)=0
=>x=0 hoặc x+1=0
x=-1
Vậy nghiệm của H(x) là 0;-1
b/Ta có:\(\left|x\right|\ge0\Rightarrow\left|x\right|+1\ge1>0\)0
Vậy Q(x) vô nghiệm
2/P(x)=ax^2+5x-3
P(12)=a.12^2+5.12-3=0
a.144+60-3=0
144a=-57
a=-57:144
a=-19/48
1) Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
+ A ( x ) = ax2 + bx + c
=> A(0) = a . 02 + b.0 + c = c mà A(0) = 4 => c = 4
+ A ( x ) = ax2 + bx + c
=> A ( 1 ) = a . 12 + b.1 + c = a + b + c hay A ( 1 ) = a + b + 4 mà A(1) = 9 => a + b = 5
+ A ( x ) = ax2 + bx + c
=> A ( 2 ) = a . 22 + b . 2 + c = 4a + 2b + c hay A ( 2 ) = 4a + 2b + 4 mà A ( 2 ) = 14 => 4a + 2b = 10
4a + 2b = 2a + 2a + 2b = 2a + 10 mà 4a + 2b = 10 => 2a + 10 = 14 => a = 2 => b = 5 - 2 = 3
Ta có M = ax2 + by2 + cxy
Với x = 0 , y = 1 Có M = a.02 + b.12 +c.0.1 = -3
=> 0 + b + 0 = -3
=> b = -3
Với x=-2 , y = 0 Có M = a(-2)2 + b.02 + c.(-2).0 = 8
=> 4a + 0 + 0 = 8
=> 4a = 8
=> a = 2
Với x = 1, y = -1 Có M = a.12 + b(-1)2 + c.1.(-1)2 = 0
=> a + b - c = 0
=> 2 - 3 - c = 0
=> -1 - c = 0
=> c = -1
Vậy ...............
Chúc b hok tốt ^^
M(0,1) = a.02 + b.12 + c.0.1 = b = -3
=> b = -3
M(-2;0) = a.(-2)2 + b.02 + c.(-2).0 = 4a = 8
=> a = 2
M(1;-1) = a.12 + b.(-1)2 + c.1.(-1) = a + b - c = 0
=> a + b = c
=> -3 + 2 = c
=> c = -1
Vậy a = 2 ; b = -3 ; c = -1