K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

đề bài yêu cầu gì vậy bạn 

9 tháng 5 2018

Ta có:

Với x=0.=>  0.h(0+1) = (0+2). h(0) => 2. h(0)= 0 . Mà 2 khác 0 nên h(0)= 0 . => o là nghiệm của h(x).

Với x=-2=> -2. h(-2+1)= (-2+2). h(-2) => -2.h(-1)=0.=> h(-1)= 0. => x=-1 là ngiệm của h(x).

 Vậy đa thức h(x) có ít nhất 2 nghiệm. Nhớ k đúng cho mìn nha. Thanks!!

9 tháng 8 2018

Thay x = -3 thì 1 là nghiệm của P(x)

Thay x = 5 thì 5 là nghiệm của P(x)

Vậy P(x) có ít nhất 2 nghiệm là 1 và 5.

Chúc bạn học tốt.

x=0⇒0.h(1)=2.h(0)=0⇒h(0)=0x=0⇒0.h(1)=2.h(0)=0⇒h(0)=0=> x=0 là nghiệm

x=−2⇒−2h(−1)=0.h(−3)⇒h(-1)=0=> x=-1 là nghiệm

Vậy đa thức f(x) có hai nghiệm x={0,-1} => dpcm

Vậy h(x) có 2 nghiệm nhé. Sorry viết nhầm

21 tháng 3 2020

1) Thay x=3 vào đẳng thức, thu được:

               \(3\times f\left(3+2\right)=\left(3^2-9\right)\times f\left(3\right)\)

    \(\Leftrightarrow\) \(3\times f\left(5\right)=0\times f\left(3\right)=0\)

    \(\Leftrightarrow\) \(f\left(5\right)=0\)  

2) Ta đã chứng minh x=5 là nhiệm của f(x)\(\Rightarrow\)Cần chứng minh f(x) có 2 nghiệm nữa

  •     Thay x=0 Vào đẳng thức, thu được

               \(0\times f\left(0+2\right)=\left(0^2-9\right)\times f\left(0\right)\)

     \(\Leftrightarrow\) \(f\left(0\right)=0\)

     \(\Rightarrow\)x=0 là ngiệm của f(x)

  •      Thay x=-3 và đẳng thức, thu được

                \(-3\times f\left(-3+2\right)=\left(\left(-3\right)^2-9\right)\times f\left(-3\right)\)

      \(\Leftrightarrow\)\(-3\times f\left(-1\right)=0\times f\left(-3\right)=0\)

      \(\Leftrightarrow\)\(f\left(-1\right)=0\)

       \(\Rightarrow\)x=-1 là nghiệm của f(x)

      Vậy f(x) có ít nhất 3 nghiệm là x=5; x=0; x=-1     

30 tháng 5 2018

+) Với x = 0 ta có :

\(0.f\left(0-2\right)=\left(0-4\right).f\left(0\right)\)

\(\Rightarrow0.f\left(-2\right)=-4.f\left(0\right)\)

\(\Rightarrow0=-4.f\left(0\right)\)

\(\Rightarrow f\left(0\right)=0\)

Như vậy x = 0 là một nghiệm của đa thức f(x)

+) Với x = 4 ta có :

\(4.f\left(4-2\right)=\left(4-4\right).f\left(4\right)\)

\(\Rightarrow4.f\left(2\right)=0.f\left(4\right)\)

\(\Rightarrow4.f\left(2\right)=0\)

\(\Rightarrow f\left(2\right)=0\)

Như vậy x = 4 là một nghiệm của đa thức f(x)

Vậy đa thức f(x) có ít nhất hai nghiệm

_Chúc bạn học tốt_

30 tháng 5 2018

Bài giải 

Cho \(x=0\)thì \(0.f\left(-2\right)=-4.f\left(0\right)=0\)

Cho \(x=2\)thì \(2.f\left(0\right)=-2.f\left(2\right)\)nên \(f\left(2\right)=-f\left(0\right)=0\)

Vậy \(f\left(x\right)\) có ít nhất 2 nghiệm là \(0\) và \(2\).

15 tháng 8 2016

Giải : 

Vì :

x.P(x+1) = ( x - 2 ) .P(x)   với mọi x  . Nên : 

* Nếu cho x = 0 , ta có : 

0.P(0+1) = (0-2) . P(0) 

  0           = -2 . P( 0) 

=> P ( 0 ) = 0 

=> x = 0 là 1 nghiệm của đt  P ( x ) 

* Nếu cho x = 2 , ta có :

2 . P ( 2 + 1 ) = ( 2 - 2 ) . P ( 2 ) 

     2 . P ( 3 ) =             0 

=> p ( 3 ) = 0 

 => x = 3 là 1 nghiệm của đt p( x ) 

      Vậy đt P ( x ) có ít nhất 2 nghiệm là x = 0 và x = 3 .

Khi x=-3 thì ta sẽ có:

(9-9)*P(-3)=(-6-2)*P(-3+1)

=>-8*P(-2)=0*P(-3)=0

=>x=-2 là nghiệm của P(x)

Khi x=3 thì ta sẽ có;
(9-9)*P(3)=(2*3-2)*P(3+1)

=>4P(4)=0

=>P(4)=0

=>x=4 là nghiệm của P(x)

Khi x=1 thì ta sẽ có:

(2-2)*P(2)=(1-9)*P(1)

=>-8*P(1)=0

=>P(1)=0

=>x=1 là nghiệm của P(x)

=>ĐPCM