K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M\left(x\right)=2x^2+3\)

\(N\left(x\right)=3x^3-2x^2+x\)

b: \(M\left(x\right)+N\left(x\right)=3x^3+x+3\)

\(M\left(x\right)-N\left(x\right)=2x^2+3-3x^3+2x^2-x=-3x^3+2x^2-x+3\)

14 tháng 5 2022

Câu c : M(x)=2x^2+3 

ta có : x≥ 0 với mọi x 

=> 2x≥ 0 => 2x + 3 ≥ 3 > 0=> M(x) ≠ 0 với mọi xVậy đa thức M(x) không có nghiệm
Câu 16              Cho đa thức     M = x2  + 5x4  − 3x3  + x2  + 4x4  + 3x3  − x + 5N = x − 5x3  − 2x2  − 8x4  + 4 x3  − x + 5a.  Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biếnb.  Tính  M+N; M- NCâu 17. Cho đa thức A = −2 xy 2  + 3xy + 5xy 2  + 5xy + 1 a.  Thu gọn đa thức A.           b.  Tính giá trị của A tại x= ;y=-1Câu 18. Cho hai đa thức                                P ( x) = 2x4  − 3x2  + x -2/3 và Q( x) = x4  − x3  + x2  +5/3a....
Đọc tiếp

Câu 16              Cho đa thức

     M = x2  + 5x4  − 3x3  + x2  + 4x4  + 3x3  − x + 5

N = x − 5x3  − 2x2  − 8x4  + 4 x3  − x + 5

a.  Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến

b.  Tính  M+N; M- N

Câu 17. Cho đa thức A = −2 xy 2  + 3xy + 5xy 2  + 5xy + 1

 

a.  Thu gọn đa thức A.

           b.  Tính giá trị của A tại x= ;y=-1

Câu 18. Cho hai đa thức

 

                               P ( x) = 2x4  − 3x2  + x -2/3 và Q( x) = x4  − x3  + x2  +5/3

a.  Tính M (x) = P( x) + Q( x)

                        b.  Tính N ( x) = P( x) − Q( x) và tìm bậc của đa thức N ( x)

Câu 19.  Cho hai đa thức: f(x) = 9 – x5 + 4x - 2x3 + x2 – 7x4

 

               g(x) = x5 – 9 + 2x2 + 7x4 + 2x3 - 3x

 

a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến

 b) Tính tổng h(x) = f(x) + g(x).

c) Tìm nghiệm của đa thức h(x).

Câu 20: Cho P(x) = 2x3 – 2x – 5 ; Q(x) = –x3 + x2 + 1 – x.

 Tính:

a.  P(x) +Q(x);

b.  P(x) − Q(x).

Câu 21: Cho đa thức                                                                                                                                      f(x) = – 3x2 + x – 1 + x4   – x3– x2 + 3x4

 

g(x) = x4 + x2 – x3 + x – 5 + 5x3 – x2

 

a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến. b) Tính: f(x) – g(x);  f(x) + g(x)

c) Tính g(x) tại x = –1.

Câu 22: Cho đa thức P = 5x2 – 7y2 + y – 1; Q = x2 – 2y2

a)      Tìm đa thức M = P – Q

b)      Tính giá trị của M tại x=1/2 và y= -1/5

 

Câu  23  Tìm đa thức A biết A + (3x2 y − 2xy3 ) = 2x2 y − 4xy3

Câu 24 Cho P( x) = x4 − 5x +  x2 + 1 và

Q( x) = 5x + 3 x2 + 5 + x2 + x4 .

 

a)Tìm  M(x)=P(x)+Q(x)

b.  Chứng tỏ  M(x) không có nghiệm

Câu 25)     Cho đa thức  P(x) = 5x-; Q(x) = x2 – 9.; R(x) = 3x2 – 4x

a.  Tính P(-1);Q(-3);R()

b.  Tìm nghiệm của các đa thức trên

1

21:

a: \(f\left(x\right)=4x^4-x^3-4x^2+x-1\)

\(g\left(x\right)=x^4+4x^3+x-5\)

b: f(x)-g(x)

=4x^4-x^3-4x^2+x-1-x^4-4x^3-x+5

=3x^4-5x^3-4x^2+4

f(x)+g(x)

=4x^4-x^3-4x^2+x-1+x^4+4x^3+x-5

=5x^4+3x^3-4x^2+2x-6

c: g(-1)=1-4-1-5=-9

 

4 tháng 5 2023

\(a,P\left(x\right)=2x^3-x+x^2-x^3+3x+5\\ =\left(2x^3-x^3\right)+x^2+\left(-x+3x\right)+5\\ =x^3+x^2+2x+5\\ Q\left(x\right)=3x^3+4x^2+3x-4x^3-5x^2+10\\ =\left(3x^3-4x^3\right)+\left(4x^2-5x^2\right)+3x+10\\ =-x^3-x^2+3x+10\\ b,M\left(x\right)=P\left(x\right)+Q\left(x\right)=x^3+x^2+2x+5-x^3-x^2+3x+10\\ =\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(2x+3x\right)+\left(5+10\right)=5x+15\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)=x^3+x^2+2x+5-\left(-x^3-x^2+3x+10\right)\\ =x^3+x^2+2x+5+x^3+x^2-3x-10\\ =\left(x^3+x^3\right)+\left(x^2+x^2\right)+\left(2x-3x\right)+\left(5-10\right)\\ =2x^3+2x^2-x-5\)

4 tháng 5 2023

`a,P(x)= 2x^3 -x+x^2 -x^3 +3x+5`

`= (2x^3 -x^3)+x^2+(-x+3x) +5`

`= x^3 +x^2 + 2x+5`

`Q(x)=3x^3 +4x^2+3x-4x^3-5x^2+10`

`= (3x^3-4x^3)+(4x^2-5x^2)+3x+10`

`= -x^3 -x^2+3x+10`

`b,M(x)=P(x)+Q(x)`

`->M(x)=(x^3 +x^2 + 2x+5)+(-x^3 -x^2+3x+10)`

`=x^3 +x^2 + 2x+5+(-x^3)  -x^2+3x+10`

`=(x^3 -x^3)+(x^2 -x^2)+(2x+3x)+(5+10)`

`= 5x+15`

`N(x)=P(x)-Q(x)`

`->N(x)=(x^3 +x^2 + 2x+5)-(-x^3 -x^2+3x+10)`

`=x^3 +x^2 + 2x+5-x^3 +x^2-3x-10`

`=(x^3-x^3)+(x^2+x^2)+(2x-3x)+(5-10)`

`=2x^2 -x-5`

\(\cdot\) `\text {dnammv}`

`7,`

`a,`

`M(x)=\(-5x^4+3x^5+x\left(x^2+5\right)+14x^4-6x^5-x^3+x-1\)

`M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1`

`=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`

`=-3x^5+9x^4+6x-1`

`N(x)=x^4(x - 5) - 3x^3 + 3x + 2x^5 - 4x^4 + 3x^3 - 5`

`= x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5`

`= 3x^5-9x^4+3x-5`

`b,`

`H(x)= N(x)+ M(x)`

`-> H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5)`

`= -3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`

`= (-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`

`= 9x-6`

`G(x)=M(x)-N(x)`

`-> G(x)= (-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)`

`= -3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`

`= (-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`

`= -6x^5+18x^4+3x+4`

`c,`

`H(x)=9x-6`

Hệ số cao nhất: `9`

Hệ số tự do: `-6`

`G(x)= -6x^5+18x^4+3x+4`

Hệ số cao nhất: `-6`

Hệ số tự do: `4`

`d,`

`H(1)=9*1-6=9-6=3`

`H(-1)=9*(-1)-6=-9-6=-15`

 

`G(1)=-6*1^5+18*1^4+3*1+4=-6+18+3+4=12+3+4=15+4=19`

`G(0)=-6*0^5+18*0^4+3*0+4=0+0+0+4=4`

 

`H(x)=9x-6=0`

`-> 9x=0+6`

`-> 9x=6`

`-> x= 6 \div 9`

`-> x=`\(\dfrac{2}{3}\)

Vậy, nghiệm của đa thức là `x=`\(\dfrac{2}{3}\)

12 tháng 5 2023

a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm

Bài 1. Cho đa thức P(x) = x3 + m.x2 + n.x + p, với m, n, p là các số nguyên. Biết rằng P(x) nhận x = 1 là một nghiệm và P(√2) = 1. Xác định đa thức P(x).Bài 2. Xác định một đa thức P(x) hệ số nguyên biết P(x) có bậc 2 và nhận số x = √2 + 1 là một nghiệm.Bài 3. Cho đa thức P(x) = ax2 + bx + c, với a, b, c là các số nguyên dương. Biết x = 1 − √2 là một nghiệm của đa thức. Chứng minh rằng (11a + 3b + 2c) chia hết cho 3Bài 4....
Đọc tiếp

Bài 1. Cho đa thức P(x) = x3 + m.x2 + n.x + p, với m, n, p là các số nguyên. Biết rằng P(x) nhận x = 1 là một nghiệm và P(√2) = 1. Xác định đa thức P(x).
Bài 2. Xác định một đa thức P(x) hệ số nguyên biết P(x) có bậc 2 và nhận số x = √2 + 1 là một nghiệm.
Bài 3. Cho đa thức P(x) = ax2 + bx + c, với a, b, c là các số nguyên dương. Biết x = 1 − √2 là một nghiệm của đa thức. Chứng minh rằng (11a + 3b + 2c) chia hết cho 3
Bài 4. Cho đa thức P(x)=ax3 + bx2 + cx + d.Biết rằng a - 2b + 4c - 8d = 0 , chứng minh rằng có ít nhất một nghiệm.
Bài 5. Cho đa thức P(x) = (x – 3)2 + 3. Tìm x thỏa mãn P(P(P(P(x)))) = 65539.
Bài 6. Xác định đa thức P(x) có bậc 2 thỏa mãn: P(0) = - 2 và 4P(x) – P(2x – 1) = 6x – 6.
Bài 7. Cho đa thức P(x) = ax3 + bx2 + cx + d có giá trị nguyên với mọi x nguyên thì 6a; a + b + c ; d đều nhận giá trị nguyên.

1
27 tháng 11 2021

Bài 3:

\(x=1-\sqrt{2}\Leftrightarrow x^2=3-2\sqrt{2}=2-2\sqrt{2}+1\\ \Leftrightarrow x^2=2x+1\Leftrightarrow x^2-2x-1=0\\ \Leftrightarrow P\left(x\right)=ax^2+bx+c=x^2-2x-1\\ \Leftrightarrow a=1;b=-2;c=-1\\ \Leftrightarrow11a+3b+2x=11-6-2=3⋮3\)

G(x)=x^4(m-5)-x^3+4x^2-n+3

G(x) có hệ số cao nhất là 3 nên m-5=3 và -n+3=-2

=>m=8 và n=5

19 tháng 3 2022

a, \(M+N=2x^2+x^2-2xy-2xy-3y^2+3y^2+1-1=3x^2-4xy\)

\(M-N=2x^2-x^2-2xy+2xy-3y^2-3y^2+1+1=x^2-6y^2+2\)

b, \(P\left(x\right)+Q\left(x\right)=x^3-4x^3+2x^2-6x+x+2-5=-3x^3+2x^2-5x-3\)

\(P\left(x\right)-Q\left(x\right)=x^3+4x^3-2x^2-6x-x+2+5=5x^3-2x^2-7x+7\)

a: M(x)=5x^4+4x^3+2x+1-5x^4+x^3+3x^2+x-1

=5x^3+3x^2+3x

b: N(x)=5x^4+4x^3+2x+1+5x^4-x^3-3x^2-x+1

=10x^4+3x^3-3x^2+x+2

`@` `\text {dnammv}`

` \text {M(x)-A(x)=B(x)}`

`-> \text {M(x)=A(x)+B(x)}`

`-> M(x)=(5x^4 + 4x^3 + 2x + 1)+(-5x^4 + x^3 + 3x^2 + x - 1)`

`= 5x^4 + 4x^3 + 2x + 1-5x^4 + x^3 + 3x^2 + x - 1`

`= (5x^4-5x^4)+(4x^3+x^3)+3x^2+(2x+x)+(1-1)`

`= 5x^3+3x^2+3x`

`b,`

`\text {N(x)=A(x)-B(x)}`

`N(x)=(5x^4 + 4x^3 + 2x + 1)-(-5x^4 + x^3 + 3x^2 + x - 1)`

`= 5x^4 + 4x^3 + 2x + 1+5x^4 - x^3 - 3x^2 - x + 1`

`= (5x^4+5x^4)+(4x^3-x^3)-3x^2+(2x-x)+(1+1)`

`= 10x^4+3x^3-3x^2+x+2`