Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(M+N\)
\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)
\(=2xy^2-3x+12-xy^2-3\)
\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)
\(=xy^2-3x+9\)
Ta có h(x) = f(x) - g(x)
= -x5 + 2x4 - x2 - 1 - (-6 + 2x + 3x3 - x4 - 3x5)
= 2x5 + 3x4 - 3x3 - x2 - 2x + 5
q(x) = g(x) - f(x) = -[f(x) - g(x)]
- h(x) = -2x5 - 3x4 + 3x3 + x2 + 2x - 5 (1)
Ta có h(1) = 2.15 + 3.14 - 3.13 - 12 - 2.1 + 5 = 4
h(-1) = 2(-1)5 + 3.(-1)4 - 3(-1)3 - (-1)2 - 2(-1) + 5
= 10
h(-2) = 2(-2)5 + 3.(-2)4 - 3(-2)3 - (-2)2 - 2(-2) + 5
= 17
h(2) = 2.25 + 3.24 - 3.23 - 22 - 2.2 + 5 = 85
Vì h(x) = -g(x)
=> g(1) = - 4 ; g(-1) = 10 ; g(2) = -85 ; g(-2) = 17
b)
Từ (1) => h(x) = -g(x)
1. h(x) = f(x) -g(x) = [2x3 -4x5 +7x2 -(3x-1)] -(-4x5 + 2x3 +7x2-12x+3) = 2x3-4x5 + 7x2 -3x+1 +4x5-2x3-7x2+12x+3 = 9x+4
Vậy h(x) = 9x+4
\(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)
\(h\left(x\right)+\left(-5x^4+x^2-2x+6\right)-\left(-5x^4+x^3+3x^2-3\right)=-2x^2-x+9\)
\(h\left(x\right)-5x^4+x^2-2x+6+5x^4-x^3-3x^2-3=-2x^2-x+9\)
\(h\left(x\right)-\left(5x^4-5x^4\right)+\left(x^2-3x^2\right)-x^3-2x+\left(6-3\right)=-2x^2-x+9\)
\(h\left(x\right)-0-2x^2-x^3-2x+3=-2x^2-x+9\)
\(h\left(x\right)-x^3-2x^2-2x+3=-2x^2-x+9\)
\(h\left(x\right)+\left(-x^3-2x^2-2x+3\right)=-2x^2-x+9\)
\(h\left(x\right)=\left(-2x^2-x+9\right)-\left(-x^3-2x^2-2x+3\right)\)
\(h\left(x\right)=-2x^2-x+9+x^3+2x^2+2x-3\)
\(h\left(x\right)=\left(-2x^2+2x^2\right)-\left(x-2x\right)+\left(9-3\right)+x^3\)
\(h\left(x\right)=0+x+6+x^3\)
\(h\left(x\right)=x^3+x+6\)
d) Ta có : h(x) + f(x) - g(x) = -2x2 - x + 9
<=> h(x) = -2x2 - x + 9 - f(x) + g(x)
<=> h(x) = -2x2 - x + 9 - x2 + 2x + 5x4 - 6 + x3 - 5x4 + 3x2 - 3
<=> h(x) = x3 + x.
Vậy h(x) = x3 + x
chúc mừng bạn đã mất căn bản
f(1) = 0
g(1) = 0
Vậy f(1) = g(1)
EZ