Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^3-5x^2+6x+3=\left(x-2\right)\left(x^2-3x\right)+3.\)( Dùng phép chia đa thức)
Để A chia hết cho x-2 thì 3 phải chia hết cho x-2 => x-2 là ước của 3
=> x-2={3-; -1; 1; 3} => x={-1; 1; 3; 5}
b/ Chia F(x) cho x-1
\(f\left(x\right)=\left(x-1\right)\left(x^2-5x+6\right)\)
Giải phương trình bậc 2 \(x^2-5x+6=0\) để tìm nghiệm còn lại
Từ đề bài ta có \(f\left(x\right)=A\left(x\right).\left(x-3\right)+2\Rightarrow f\left(3\right)=2\)
\(f\left(x\right)=B\left(x\right).\left(x+4\right)+9\Rightarrow f\left(-4\right)=9\)
\(f\left(x\right)=\left(x^2+3\right).\left(x^2+x-12\right)+\left(x^2+3\right).\left(ax+b\right)=\left(x^2+3\right).\left(x-3\right).\left(x+4\right)+\left(x^2+3\right).\left(ax+b\right)\left(1\right)\)Từ (1).Ta có \(f\left(3\right)=\left(3^2+3\right)\left(3a+b\right)=36a+12b\Rightarrow36a+12b=2\)
\(f\left(-4\right)=\left(\left(-4\right)^2+3\right)\left(-4a+b\right)=-76a+19b\Rightarrow-76a+19b=9\)
Giải hệ phương trình ẩn a,b ta tìm được a,b.Từ đó thế vào (1).Ta tìm được f(x)
Vì đa thức chia có bậc 2 suy ra đa thức dư trong phép chia f(x):\(\left(x^2+x-12\right)\) có dạng ax+b
\(\Rightarrow f\left(x\right)=\left(x^2+x-12\right).\left(x^2+3\right)+ax+b\)
\(\Rightarrow f\left(x\right)=\left(x-3\right)\left(x+4\right).\left(x^2+3\right)+ax+b\)
Vì f(x) chia x-3 dư 2\(\Rightarrow\) f(3)=3a+b=2
Vì f(x) chia x+4 dư 9\(\Rightarrow\) f(-4)=-4a+b=9
Có -4a+b-(3a+b)=9-2
-4a+b-3a-b=7
-7a=7
a=-1
\(\Rightarrow\) b=2-3.(-1)=5
Đa thức dư là: -x+5
\(\Rightarrow f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)-x+5\)
\(\Rightarrow f\left(x\right)=x^4+3x^2+x^3+3x-12x^2-36-x+5\)
\(\Rightarrow f\left(x\right)=x^4+x^3-9x^2+2x-31\)
Sử dụng định lý Bezout:
a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
b/ \(g\left(x\right)=0\Rightarrow x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)
Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a
c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)
\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)
Thay \(x=1\Rightarrow a+b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)
d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)
ý kiến của mk thôi nha chắc ko đúng đâu
x^2 - 6x + 12 = 259
x^2 - 6x - 247 = 0
(x+13)(x-19) = 0
x = -13;19
ta có f(x)=259
=>f(259)=2592-6*259+12
=>f(259)=67081-1554+12
=>f(259)=-65515
* là dấu nhân