Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(2x^4+ax^2+bx+c⋮x-2\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-2\right)\cdot a\left(x\right)\)
Thay \(x=2\Leftrightarrow32+4a+2b+c=0\Leftrightarrow4a+2b+c=-32\left(1\right)\)
\(2x^4+ax^2+bx+c:\left(x^2-1\right)R2x\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\cdot b\left(x\right)+2x\)
Thay \(x=1\Leftrightarrow2+a+b+c=2\Leftrightarrow a+b+c=0\left(2\right)\)
Thay \(x=-1\Leftrightarrow2+a-b+c=-2\Leftrightarrow a-b+c=-4\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=-32\\a+b+c=0\\a-b+c=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{34}{3}\\b=2\\c=\dfrac{28}{3}\end{matrix}\right.\)
Bài 2:
Do \(f\left(x\right):x^2+x-12\) được thương bậc 2 nên dư bậc 1
Gọi đa thức dư là \(ax+b\)
Vì \(f\left(x\right):x^2+x-12\) được thương là \(x^2+3\) và còn dư nên
\(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)+ax+b\\ \Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x-3\right)\left(x^2+3\right)+ax+b\)
Thay \(x=3\Leftrightarrow f\left(3\right)=3a+b\)
Mà \(f\left(x\right):\left(x-3\right)R2\Leftrightarrow f\left(3\right)=2\Leftrightarrow3a+b=2\left(1\right)\)
Thay \(x=-4\Leftrightarrow f\left(-4\right)=-4a+b\)
Mà \(f\left(x\right):\left(x+4\right)R9\Leftrightarrow f\left(-4\right)=9\Leftrightarrow-4a+b=-9\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\-4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)
Do đó \(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)-x+5\)
\(\Leftrightarrow f\left(x\right)=x^4+3x^2+x^3+3x-12x^2-36-x+5\\ \Leftrightarrow f\left(x\right)=x^4+x^3-9x^2+2x-31\)
Lời giải:
Giả sử $f(x)$ chia $(x-1)(x-2)$ được thương là 2 và dư $ax+b$
Khi đó: $f(x)=2(x-1)(x-2)+ax+b(*)$
Vì $f(x)$ chia $x-1$ dư $2$, chia $x-2$ dư $3$ nên $f(1)=2; f(2)=3$
Thay vào $(*)$ thì:
$2=f(1)=a+b$
$3=f(2)=2a+b$
$\Rightarrow a=1; b=1$
Vậy dư là $x+1$. Đa thức $f(x)=2(x-1)(x-2)+x+1=2x^2-5x+5$
F(-2)=0=> -8a+4b+c=0 (1)
f(1)=6=> a+b+c=6 (2)
f(-1)=4=> -a+b+c=4 (3)
(2) trừ (3)=> 2a=2=> a=1; thay vào (3)=> c=5-b thay vào (1)
-8+4b+5-b=0=> b=1
\(\left\{{}\begin{matrix}a=-1\\b=1\\c=4\\f\left(x\right)=-x^3+x^2+4\end{matrix}\right.\)
Khi f( x) : ( x - 2 ) ( x - 3) thì còn đa thức dư vì ( x - 2 ) ( x - 3 ) có bậc cao nhất là 2
=> đa thức dư có bậc cao nhất là 1
=> G/s: đa thức dư là: r(x) = a x + b
Ta có: f ( x ) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + ax + b
Vì f ( x ) chia ( x - 2 ) dư 2016
=> f ( 2 ) = 2016 => a.2 + b = 2016 (1)
Vì f(x ) chia ( x - 3 ) dư 2017
=> f ( 3) = 2017 => a.3 + b = 2017 (2)
Từ (1) ; (2) => a = 1; b = 2014
=> Đa thức f(x) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + x + 2014
và đa thức dư là: x + 2014
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
Chia f(x) cho x+1 thì dư 6 => \(f\left(x\right)-6⋮x+1\)
hay \(x^2+ax+b-6⋮x+1\)
Làm tính chia đa thức ta được: \(\left(x^2+ax+b-6\right):\left(x+1\right)=x-1+a\)
và dư ra \(b-a-5\)
Mà phép tính trên chia hết \(\Rightarrow b-a-5=0\Leftrightarrow b-a=5\)(1)
Tương tự: \(x^2+ax+b-3⋮x-2\)
Ta có: \(\left(x^2+ax+b-3\right):\left(x-2\right)=x+2+a\)
dư ra \(2a+b+1\). Phép chia chia hết \(\Leftrightarrow2a+b+1=0\Leftrightarrow2a+b=-1\)(2)
Từ (1) và (2) \(\Rightarrow2a+b-\left(b-a\right)=-1-5\)
\(\Leftrightarrow2a+b-b+a=-6\)
\(\Leftrightarrow3a=-6\Rightarrow a=-2\)
\(\Rightarrow b=3\)
Thay \(a=-2,b=3\)vào \(f\left(x\right):\)
\(f\left(x\right)=x^2-2x+3\)
Vậy...
Lời giải:
Theo định lý Bê-du về phép chia đa thức thì số dư của $f(x)$ chia cho $x-a$ có số dư là $f(a)$.
Áp dụng vào bài:
$f(2)=8a+4b+10=14\Leftrightarrow 2a+b=1(1)$
$f(-1)=-a+b-14=-16\Leftrightarrow -a+b=-2(2)$
Từ $(1); (2)\Rightarrow a=1; b=-1$