Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo bài ra ta có \(\hept{\begin{cases}f\left(0\right)=c=0\\f\left(1\right)=a+b+c=2013\\f\left(-1\right)=a-b+c=2012\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2013\\a-b=2012\end{cases}}\)
Cộng vế với vế \(a+b+a-b=2013+2012\Leftrightarrow2a=4025\Leftrightarrow a=\frac{4025}{2}\)
\(\Rightarrow b=\frac{4025}{2}-2012=\frac{1}{2}\)
Vậy \(a=\frac{4025}{2};b=\frac{1}{2};c=0\)
a,a+b+c=0 <=>c=-a-b
Khi đ f(x)=ax^2+bx-a-b
f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)
=>f(x) có nghiệm x=1
b,a-b+c=0 <=>c=b-a
Khi đó f(x)=ax^2+bx+b-a
f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)
=>f(x) có nghiệm x=-1
a) Thay x = 1 ta có :
F(1) = a.1^2 + b.1 + c = a + b + c = 0
Vậy x = 1 là nghiệm của f(x)
b) thay x = -1 ta có :
f(-1) = a. (-1)^2 + b.(-1) + c
= a - b + c = 0
VẬy x = -1 là nghiệm của f(x) nếu a - b + c = 0
câu a
ta có \(\hept{\begin{cases}f\left(0\right)=c=0\\f\left(1\right)=a+b+c=2013\\f\left(-1\right)=a-b+c=2012\end{cases}\Rightarrow\hept{\begin{cases}c=0\\a=2012,5\\b=0,5\end{cases}}}\)
câu b , do \(f\left(-2\right)=f\left(3\right)\Leftrightarrow4a-2b+c=9a+3b+c=2036\)
\(f\left(1\right)=a+b+c=2012\Rightarrow\hept{\begin{cases}a=4\\b=-4\\c=2012\end{cases}}\)do đó \(f\left(x\right)=4x^2-4x+2012=\left(2x-1\right)^2+2011>0\)với mọi x,