Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : f(-2) = 4a - 2b + c
f(3) = 9a + 3b + c
Lại có f(-2) + f(3) = 4a - 2b + c + 9a + 3b + c = 13a + b + 2c = 0(Vì 13a + b + 2c = 0)
=> f(-2) = - f(3)
=> [f(-2)]2 = -f(3).f(-2)
mà [f(-2)]2 \(\ge0\)
=> -f(3).f(-2) \(\ge0\)
=> f(-2).f(3) \(\le\)0
Vì \(29a+2c=3b\) => \(c=\frac{3b-29a}{2}\)
Ta có: \(f\left(2\right).f\left(-5\right)=\left[a.2^2+b.2+c\right]\left[a\left(-5\right)^2+b.\left(-5\right)+c\right]\)
\(=\left(4a+2b+c\right)\left(25a-5b+c\right)\)
\(=\left(4a+2b+\frac{3b-29a}{2}\right)\left(25a-5b+\frac{3b-29a}{2}\right)\)
\(=\left(\frac{8a+4b+3b-29a}{2}\right)\left(\frac{50a-10b+3b-29a}{2}\right)\)
\(=\left(\frac{-21a+7b}{2}\right)\left(\frac{21a-7b}{2}\right)\)
\(=\frac{-7}{2}\left(3a-b\right).\frac{7}{2}\left(3a-b\right)\)
\(=\frac{-49}{4}\left(3a-b\right)^2\le0\) (ĐFCM)
\(f\left(2\right)=a.2^2+b.2+c=4a+2b+c\)
\(f\left(-5\right)=a.\left(-5\right)^2+b.\left(-5\right)+c=25a-5b+c\)
\(f\left(2\right)+f\left(5\right)=4a+2b+c+25a-5b+c=29a-3b+2c\)
\(=\left(29a+2c\right)-3b=3b-3b=0\)
\(\Leftrightarrow f\left(2\right)=-f\left(-5\right)\)
\(\Leftrightarrow f\left(2\right)f\left(-5\right)\le0\).
Ta có : f(2) = 4a + 2b + c
f(-5) = 25a - 5b + c
=> f(2) + f(-5) = (4a + 25a) + (2b - 5b) + (c + c) = (29a + 2c) - 3b = 3b - 3b = 0 (Vì 29a + 2c = 3b)
=> f(2) = -f(5)
=> 4a + 2b + c = -(25a - 5b + c)
=> f(2).f(-5) = (4a + 2b + c).(25a + 5b + c) = -(25a + 5b + c)2 < 0 (đpcm)