K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

Ta có : f ( x ) = ax^2 + bx + c 

Xét f ( 0 ) = a . 0^2 + b . 0 + c = 2018

           => c = 2018

Xét f ( 1 ) = a . 1^2 + b . 1 + c = 2019

          => a + b + c = 2019

         = > a + b = 1 [ do c = 2018 theo trên rồi nhá ] ( 1 )

Xét f ( - 1 ) = a . ( -1 ) ^2 + b . ( -1 ) + c

        => a - b + c = 2017

       => a - b = -1         ( 2 )

Cộng ( 1 ) và ( 2 ) vế theo vế , ta được

     a + b + a - b = 1 + ( - 1 )

 = > 2. a = 0

= > a = 0

   Trừ ( 1 ) và ( 2 ) vế theo vế ta được 

               a + b - a + b = 1 - ( - 1 ) 

             => 2 . b = 2

             = > b = 1

Do đó : xét f ( - 2019 ) = a . ( - 2019 )^2 + b . ( - 2019 ) + c

                              => 0 - 2019 + 2018

                              = - 1

Vậy f ( - 2019 ) = -1 

[ nếu gặp các dạng bài này bạn cứ thay vào đa thức ban đầu rồi biến đổi tìm ra a , b , c nha ]

18 tháng 4 2021

có thừa x ở cx ko ạ

23 tháng 5 2021

Xét đa thức \(F\left(x\right)=ax^2+bx+c\)

\(F\left(0\right)=c=2016\)

\(F\left(1\right)=a+b+c=2017\Rightarrow a+b=1\)  (1)

\(F\left(-1\right)=a-b+c=2018\Rightarrow a-b=2\)  (2)

Từ (1), (2)

\(\Rightarrow\hept{\begin{cases}a+b-a+b=-1\\a+b+a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}2b=-1\\2a=3\end{cases}}\Rightarrow\hept{\begin{cases}b=-0,5\\a=1,5\end{cases}}\)

\(\Rightarrow F\left(2\right)=1,5.2^2-0,5.2+2016=2021\)

Vậy \(F\left(2\right)=2021\).

Sai đề không bạn???

             

Theo đề bài f(0)= 2017 => c= 2017

         f(1)= 2018 => a + b + c = 2018 => a + b = 1 (1)

         f(-1)= 2019 => a - b + c= 2019 => a - b= 2  (2)

Cộng theo vế của (1) và (2), ta được

2a = 3  => a = 3/2

=>b=  -1/2

Vậy a=3/2, b=-1/2, c= 2017. Khi đó f(2)= 6 - 2 + 2017= 2021

Vậy f(2)= 2021

Ta có

\(F\left(0\right)=2016\)

\(\Leftrightarrow a\cdot0^2+b\cdot0+c=2016\)

\(\Leftrightarrow0+0+c=2016\)

\(\Leftrightarrow c=2016\)

\(F\left(1\right)=2016\)

\(\Leftrightarrow a\cdot1^2+b\cdot1+c=2017\)

\(\Leftrightarrow a+b+c=2017\)

\(\Leftrightarrow a+b+2016=2017\)

\(\Leftrightarrow a+b=1\)       \(\left(1\right)\)

\(F\left(-1\right)=2018\)

\(\Leftrightarrow a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=2018\)

\(\Leftrightarrow a-b+c=2018\)

\(\Leftrightarrow a-b+2016=2018\)

\(\Leftrightarrow a-b=2\)       \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow a=\left(1+2\right)\div2=3\div2=1.5\)

\(\Rightarrow b=1-1.5=-0.5\)

Vậy \(F\left(x\right)=1.5x^2-0.5x+2016\)

\(\Leftrightarrow F\left(2\right)=1.5\cdot2^2-0.5\cdot2+2016\)

\(=1.5\cdot4-0.5\cdot2+2016\)

\(=6-1+2016=2021\)

Vậy \(F\left(2\right)=2021\)

nhớ k nha

24 tháng 4 2017
Đặt g(x)=f(x)-x-1 vì f(x) bậc 3 nên g(x) cũng bậc ba. Ta có g(2015)=g(2016)=0 Nên g(x)=(x-2015)(x-2016)(ax+b) suy ra f(x)=(x-2015)(x-2016)+x+1. Từ điều kiện f(2014)-f(2017)=3 suy ra a=-1, b tùy ý
Y
6 tháng 5 2019

\(\left\{{}\begin{matrix}f\left(0\right)=2017\\f\left(1\right)=2018\\f\left(-1\right)=2019\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}c=2017\\a+b+c=2018\\a-b+c=2019\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=1\\a-b=2\\c=2017\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{3}{2}\\b=-\frac{1}{2}\\c=2017\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)=\frac{3}{2}\cdot2^2-\frac{1}{2}\cdot2+2017\)

\(\Rightarrow f\left(2\right)=6-1+2017=2022\)

17 tháng 5 2020

Cho mk hỏi sao a lại=\(\frac{3}{2}\);b=\(\frac{1}{2}\)

21 tháng 4 2019

f(0) = a.02 + b. 0 + c = 2016

<=> c =2016

f (1) = a.12 + b.1 + c =2017

<=> a + b =1        (1)

f ( -1 ) = a (-1)2 + b . (-1) +c =2018

<=> a -b =2           (2)

Từ (1),(2) <=> a = 1,5 ; b = -0,5

=> F(x) = 1,5x2  -0,5 x + 2016

F (2) = 1,5 . 22 -0,5 .2 +2016 

         = 6 -1 +2016 =2021

21 tháng 4 2019

Ta có: 

\(F\left(0\right)=a.0^2+b.0+c=2016\)

\(\Rightarrow c=2016\)

\(F\left(1\right)=a.1^2+b.1+c=2017\)

\(\Rightarrow a+b=1\)

\(F\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=2018\)

\(\Rightarrow a-b=2\)

Vì a + b =1 và a - b = 2 nên \(\Rightarrow a=\frac{3}{2};b=\frac{-1}{2}\)

Vậy \(F\left(2\right)=\frac{3}{2}.2^2-\left(\frac{-1}{2}\right).2+2016=2023\)