K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

Ta có : \(f(7)=a\cdot7^3+2\cdot b\cdot7^2+3\cdot c\cdot7+4d=343a+98b+21c+4d\)

Lại có : \(f(3)=a\cdot3^3+2\cdot b\cdot3^2+3\cdot c\cdot3+4d=27a+18b+9c+4d\)

Giả sử phản chứng nếu \(f(7)\)và \(f(3)\)đồng thời bằng 73 và 58 suy ra là :

\(f(7)-f(3)=(343a-27a)+(98b-18b)+(21c-9c)+(4d-4d)=73-58=15\)

\(\Rightarrow f(7)-f(3)=316a+90b+12c=15\)

Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k

\(f(7)-f(3)=2k=15\)

Mà 15 ko chia hết cho 2 , suy ra giả sử sai

=> đpcm

3 tháng 5 2018

Ta có f(7) = a.7^3+2.b.7^2+3.c.7+4d = 343a +98b+21c+4d

Lại có f(3)= \(a.3^3+2.b.3^2+3.c.3+4.d=27a+18b+9c+4d\\ \) 

Giả sử phản chứng : Nếu f(7) và f(3) đồng thời bằng 73 và 58 thì suy ra : \(f\left(7\right)-f\left(3\right)=\left(343a-27a\right)+\left(98b-18b\right)+\left(21c-9c\right)+\left(4d-4d\right)=73-58=15\)

\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=316a+90b+12c=15\)

Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k

\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=2k=15\)

Mà 15 ko chia hết cho 2 , suy ra giả sử sai

\(\Rightarrow\)\(\left(ĐPCM\right)\)

4 tháng 5 2018

Chỗ "các đơn thức chỉ có dạng chung duy nhất là 2k" ấy mình thấy thay bằng:

Mà \(f\left(7\right)-f\left(3\right)=316a+90b+12c\)

                               \(=2\left(158a+45b+6c\right)⋮2\)

                                 =>ĐCCM

hay hơn.

Dù sao thì cũng cho bạn !!!

7 tháng 5 2018

f(x)=ax3+2bx2+3cx+4d

f(7)=a73+2b72+3c7+4d

=343a+98b+21c+4d

f(3)=a33+2b32+3c3+4d

=27a+18b+9c+4d

Giả sử cùng tồn tại f(7)=73;f(3)=58

=>f(7)+f(3)=(343a+98b+21c+4d)+(27a+18b+9c+4d)

=343a+98b+21c+4d+27a+18b+9c+4d

=(343a+27a)+(98b+18b)+(21c+9c)+(4d+4d)

=(370a+116b+30c+8d)⋮2

mà 73+58=131\(⋮̸\)2(vô lý)

=> không thể cùng tồn tại f(7)=73;f(3)=58 với f(x)=ax3+2bx2+3cx+4d

16 tháng 5 2018

: Giả sử tồn tại đồng thời f(7) = 73 và f(3) = 58 :
=> f(7) = a.7^3 + b.7^2 + c.7 + d = 343a + 49b + 7c + d
f(3) = a.3^3 + b.3^2 + c.3 + d = 27a + 9b + 3c + d
=> f(7) + f(3) = 343a + 27a + 49b + 9b + 7c + 3c + d + d
=> f(7) + f(3) = 370a + 58b + 10c + 2d ⋮ 2 (vì a, b, c, d là các số nguyên)
=> f(7) + f(3) ⋮ 2
Nhưng theo giả thiết thì f(7) + f(3) = 73 + 58 = 131 không chia hết cho 2.
=> giả thiết nêu ra là vô lý.
Vậy với f(x) = ax^3 + bx^2 + cx + d (a, b, c, d là các số nguyên) thì không thể tồn tại f(7) = 73 và f(3) = 58.

NV
23 tháng 3 2022

Với đa thức hệ số nguyên, xét 2 số nguyên m, n bất kì, ta có:

\(f\left(m\right)-f\left(n\right)=am^3+bm^2+cm+d-an^3-bn^2-cn-d\)

\(=a\left(m^3-n^3\right)+b\left(m^2-n^2\right)+c\left(m-n\right)\)

\(=a\left(m-n\right)\left(m^2+n^2+mn\right)+b\left(m-n\right)\left(m+n\right)+c\left(m-n\right)\)

\(=\left(m-n\right)\left[a\left(m^2+n^2+mn\right)+b\left(m+n\right)+c\right]⋮\left(m-n\right)\)

\(\Rightarrow f\left(m\right)-f\left(n\right)⋮m-n\) với mọi m, n nguyên

Giả sử tồn tại đồng thời \(f\left(7\right)=53\) và \(f\left(3\right)=35\)

Theo cmt, ta phải có: \(f\left(7\right)-f\left(3\right)⋮7-3\Leftrightarrow53-35⋮4\Rightarrow18⋮4\) (vô lý)

Vậy điều giả sử là sai hay không thể đồng thời tồn tại \(f\left(7\right)=53\) và \(f\left(3\right)=35\)

23 tháng 3 2022

em cảm ơn thầy

7 tháng 2 2022

Giả sử tồn tại \(f\left(7\right)=72\) và \(f\left(3\right)=42\). Ta có:

\(\left\{{}\begin{matrix}f\left(7\right)=a.7^3+2.b.7^2+3.c.7+4d=343a+98b+21c+4d\\f\left(3\right)=a.3^3+2.b.3^3+3.c.3+4d=27a+18b+9c+4d\end{matrix}\right.\)

\(\Rightarrow f\left(7\right)+f\left(3\right)=\left(343a+27a\right)+\left(98b+18b\right)+\left(21c+9c\right)+\left(4d+4d\right)=370a+116b+30c+8d⋮̸2\)

Mà \(f\left(7\right)+f\left(3\right)=72+42=112⋮2\) 

Từ hai điều trên suy ra giả thiết sai.

Vậy không thể tồn tại \(f\left(7\right)=72\) và \(f\left(3\right)=42\)

3 tháng 4 2024

72+42=112 ak bạn

AH
Akai Haruma
Giáo viên
21 tháng 12 2021

Lời giải:

Giả sử tồn tại điều như đề nói.

$f(7)=343a+98b+21c+4d=72$

$f(3)=27a+18b+9c+4d=42$

$\Rightarrow f(7)-f(3)=316a+80b+12c=30$

$\Rightarrow 4(79a+20b+3c)=30$

$\Rightarrow 79a+20b+3c=\frac{30}{4}\not\in\mathbb{Z}$

 (vô lý vì $a,b,c$ là các số nguyên)

Do đó điều giả sử là sai, tức là không tồn tại $f(7)=72$ và $f(3)=42$

29 tháng 11 2023

\(f\left(x\right)=ax^3+2bx^2+3cx+4d\)

\(f\left(7\right)=a\cdot7^3+2b\cdot7^2+3c\cdot7+4d\)

\(=343a+98b+21c+4d\)

\(f\left(3\right)=a\cdot3^3+2b\cdot3^2+3c\cdot3+4d\)

\(=27a+18b+9c+4d\)

\(f\left(7\right)+f\left(3\right)=343a+98b+21c+4d+27a+18b+9c+4d\)

\(=370a+116b+30c+8d\)

\(=2\left(185a+58b+15c+4d\right)⋮2\)

mà f(7)+f(3)=72+42=114 chia hết cho 2

nên có tồn tại f(7)=72 và f(3)=42 nha bạn