Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)Ta có:
\(f\left(x\right)=2x^2-3x-\left(5x^2+4x\right)+4x\left(x+1\right)+1\)
\(=2x^2-3x-5x^2-4x+4x^2+4x+1\)
\(=x^2-3x+1\)
\(b.\)Tại \(x=-1\)thì \(g\left(x\right)=0\)nên:
\(g\left(-1\right)=0\)\(\Leftrightarrow a\left(-1\right)^2+b\left(-1\right)-2=0\)
\(\Leftrightarrow a.1+\left(-b\right)=0+2\)
\(\Leftrightarrow a-b=2\) \(\left(1\right)\)
Tại: \(x=2\)thì \(g\left(2\right)=0\)nên:
\(g\left(2\right)=0\)\(\Leftrightarrow a.2^2+b.2-2=0\)
\(\Leftrightarrow4a+2b=2\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)ta tìm được \(a=1\)và \(b=-1\)
Lỡ nhấn nút gửi, làm tiếp nhé:
\(c.\)Với \(a=1\)và \(b=-1\)thì \(g\left(x\right)=x^2-x-2\)
Ta có: \(g\left(x\right)=x^2-1-x-1=\left(x^2-1\right)-\left(x+1\right)=\left(x^2-x+x-1\right)-\left(x+1\right)\)
\(=\left[x\left(x-1\right)+x-1\right]-\left(x+1\right)=\left(x+1\right)9x-1-\left(x+1\right)=\left(x+1\right)\left(x-1-1\right)\)
Vậy: \(g\left(x\right)=\left(x-2\right)\left(x+1\right)\)
Ta có: \(h\left(x\right)==f\left(x\right)-g\left(x\right)=x^2-3x+1-\left(x^2-x-2\right)=-2x+3\)
\(h\left(x\right)=0\)\(\Leftrightarrow-2x+3=0\Leftrightarrow-2x=0-3=-3\Leftrightarrow z=\left(-3\right):\left(-2\right)\Leftrightarrow x=\frac{3}{2}\)
Khi \(a=\frac{3}{2}\)thì \(f\left(a\right)-g\left(a\right)=0\Leftrightarrow f\left(a\right)=g\left(a\right)\)
Chắc vậy !!!
f(x)= ax^3+4x(x^2-1)+8 = ax^3 + 4x^3 - 4x + 8 = (a + 4)x^3 - 4x + 8
g(x)= x^3 - 4x(bx+1) +c-3 = x^3 - 4bx^2 - 4x + c - 3
Để f(x)=g(x) thì a + 4 = 1, -4b =0 và c - 3 = 8
=> a = -3, b = 0, c = 11
Ta có: f(x) = ax3 + 4x(x2- x) - 4x + 8
= ax3 + 4x3 - 4x2 - 4x + 11 - 3
= x3 (a + 4) - 4x (x + 1) + 11 -3
f(x)=g(x) <=>x3 (a + 4) - 4x (x + 1) + 11 -3 = x3 - 4x ( bx +1) + c - 3
<=> \(\hept{\begin{cases}a+4=1\\x+1=bx+1\\c=11\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=1\\c=11\end{cases}}\)
Vậy a=-3, b=1 và c=11
a: x=1 là nghiệm nên f(1)=0
\(\Leftrightarrow a+4\cdot1\cdot0+8=0\)
=>a=-8
Vậy: \(f\left(x\right)=-8x^3+4x^3-4x+8=-4x^3-4x+8\)
c: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}1-4\left(b+1\right)+c-3=0\\8-8\left(2b+1\right)+c-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c-2-4b-4=0\\8-16b-8+c-3=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4b+c=6\\-16b+c=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\c=6\end{matrix}\right.\)