\(x^2\)+bx+c với a,b,c thuộc R thỏa mãn 13a+b+2c=0. Chứng minh f(-2).f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)

13 tháng 5 2019

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\)

                    \(=4a-2b+c\)

\(\Rightarrow f\left(3\right)=a.3^2+b.3+c\)

                  \(=9a+3b+c\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

                                      \(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)\le0\)

3 tháng 1 2019

y = f(x) = a . x2 + b . x + c ( a , b , c ∈ Q )

+) f(-2) = a . ( -2 )2 + b . ( -2 ) + c

= a . 4 + b . ( -2 ) + c

= 2 ( 2a - b + c ) ⇒ y = 2( 2a - b + c )

+) f(-3) = a . ( -3 )2 + b . ( -3 ) + c

= a . 9 - b . 3 + c

= 3 ( 3a - b + c ) ⇒ y = 3( 3a - b + c )

9 tháng 4 2017

hình như đề sai rùi bn

14 tháng 8 2018

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=4a-2b+c\)

\(\Rightarrow f\left(3\right)=a.3^2+b.3+c=9a+3b+c\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=0\Rightarrow f\left(-2\right)=-f\left(3\right)\)

Xét \(f\left(-2\right).f\left(3\right)=\left[-f\left(3\right)\right].f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\)

10 tháng 4 2024

mình không hiểu, sao f(2).f(3)=[f(3)].f(3)=[f(3)]2?