\(5x^3+x^4-x^2+2x^2-x^3-x^4-2x+5-4x^3\). CMR: f(x) ko có nghiệm

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

\(f\left(x\right)=5x^3+x^4-x^2+2x^2-x^3-x^4-2x+5-4x^3\) \(f\left(x\right)=\left(5x^3-x^3-4x^3\right)+\left(x^4-x^4\right)+\left(-x^2+2x^2\right)-2x+5\)

\(f\left(x\right)=x^2-2x+5\) = 0

\(f\left(x\right)=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{19}{4}\) = 0

\(f\left(x\right)=\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\) = 0

Ta có: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x thuộc R

=> \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Suy ra f(x) vô nghiệm!!!

Mình làm thế thôi chứ không chắc!thanghoa

10 tháng 3 2018

Cảm ơnyeu

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

29 tháng 3 2018

\(f\left(x\right)=4x^3+4x^4-x^2+3x^2-3x^4-3x^3\)

\(\Leftrightarrow f\left(x\right)=\left(4x^3-3x^3\right)+\left(4x^4-3x^4\right)+\left(-x^2+3x^2\right)\)

\(\Leftrightarrow f\left(x\right)=x^3+x^4+2x^2\)

\(f\left(x\right)=0\)

\(\Leftrightarrow x^3+x^4+2x^2=0\)

\(\Leftrightarrow x^2\left(x+x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\forall x\end{matrix}\right.\)

Vậy f(x) chỉ có 1 nghiệm

f(x)=5x3+2x4-x2+3x2-x3-x4+1-4x3

=(5x3-x3-4x3)+(2x4-x4)+(3x2-x2)+1

=0+x4+2x2+1>(=)0+0+0+1=1

=>đa thức f(x) không có nghiệm

=>đpcm

23 tháng 4 2017

Bài 1:

a/ Kết quả: f(x) - g(x) + h(x) = 2x - 1

(tự ghép cặp vào r` tính hoặc tính = hàng dọc nhé bn, muộn r` , mk k muốn đánh máy)

b/ 2x - 1 = 0

<=> 2x = 1

<=> x = \(\dfrac{1}{2}\)

Vậy x = .... để f(x) - g(x) + h(x) = 0

Bài 2:

a/ dễ --> tự lm cko quen để đỡ mất căn bản nhé bn!

b/ sửa: g(x) = ..... + 2x3 + 3x

Làm: kết quả: 3x2 + 7x (ns chung là lười nên mk k muốn đánh máy, k hiểu thì ib lại vs mk)

c/ h(x) = 3x2 + 7x = 0

<=> x(3x + 7) = 0

<=> \(\left[{}\begin{matrix}x=0\\3x+7=0\Rightarrow3x=-7\Rightarrow x=\dfrac{-7}{3}\end{matrix}\right.\)

Vậy đa thức h(x) có 2 no là:....(tự ghi)

26 tháng 4 2017

tớ thấy bạn làm nhâm 1 phần

14 tháng 4 2018

a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(4-1\right)x^4+\left(5-1-4\right)x^3+\left(3-2\right)x^2+1\)

\(f\left(x\right)=2x^6+3x^4+x^2+1\)

b) \(2.1+3.1+1+1=7\)

c) \(\left\{{}\begin{matrix}x^6\ge0\\x^4\ge0\\x^2\ge0\end{matrix}\right.\) \(\Leftrightarrow2x^6+3x^4+x^2\ge0\Rightarrow2x^6+3x^4+x^2+1\ge1\)

=> f(x) >=1 => dpcm

16 tháng 4 2017

Đây là suy nghĩ của mk thôi, mình cx ko chắc lắm đâu:

Ta có:

F(x)=4x3 + 3x4 \(-\)1 - x2+4x2 -x3-2x4 +3-3x3

=(3x4-2x4) +(4x3-x3-3x3)+(-x2+4x2)+( -1+3)

= x4 + 3x2 +2

Lại có:

x4\(\ge\)0

=> -x4\(\ge\)0

3x2\(\ge\)0

=> 3(-x)2\(\ge\)0

2>0

=> x4+3x2+2>0

Vậy đa thức F(x) luôn nhận giá trị lớn hơn 0 vs mọi x hay đa thức F(x) không có nghiệm trong R

16 tháng 4 2017

F (x) = 4x3 + 3x4 - 1 - x2 + 4x2 - x3 - 2x4 + 3 - 3x3

F (x) = (3x4 - 2x4) + (4x3 - x3 - 3x3) + (-x2 + 4x2) + (-1+3)

F (x) = x4 + 3x2 + 2

Ta có: x4 \(\ge\) 0 với mọi x

Ta có: 3x2 \(\ge\) 0 với mọi x

=> x4 + 3x2 \(\ge\) 0 với mọi x

Mà x4 + 3x2 + 2 > 0

Vậy F (x) vô nghiệm