Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1: a)M=3x^2-1/2+1+2x-x^2
= 2x^2-3/2+2x
ta có: hạng tử 2x^2 có bậc là 2
hạng tử -3/2 có bậc là 0
hạng tử 2x có bậc là 1
vậy đa thức M có bậc là 2
b) N=3x^2+7x^3-3x^3+6x^3-3x^2-1/5
=10x^3-1/5
ta có: hạng tử 10x^3 có bậc là 3
hạng tử 1/5 có bậc là 0
vậy bậc của đa thức N là 3
câu 2: Q= x^2+y^2+z^2+x^2-y^2+z^2+x^2+y^2-z^2
=3x^2+y^2+z^2
câu 3: P=1/3x^2y+xy^2-xy+1/2xy^2-5xy-1/3x^y
=3/2xy^2-6xy
1)
a) 3x2 – x + 1 + 2x – x2 = 3x2 + x + 1 có bậc 2;
b) 3x2 + 7x3 – 3x3 + 6x3 – 3x2 = 10x3 có bậc 3
2)
Q = x2 + y2 + z2 + x2 - y2 + z2 + x2 + y2 - z2.
Q = (x2 + x2 + x2 ) + (y2 - y2 + y2) + (z2 + z2 - z2)
= 3x2 + y2 + z2.
3)
Thu gọn rồi tính giá trị của đa thức P tại x = 0,5 và y = 1.
Ta có: P = x2 y + xy2 – xy + xy2 – 5xy – x2y
P = x2 y – x2y + xy2 + xy2 – xy – 5xy = xy2 – 6xy
Thay x = 0,5 và y = 1 ta được
P = . 0,5 . 12 – 6. 0,5 . 1 = - 3 = .
Vậy P = tại x = 0,5 và y = 1.
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
a) \(2xy^2\left(-\dfrac{1}{3}x^2y^3\right)^3=2xy^2\left(-\dfrac{1}{27}x^6y^9\right)=-\dfrac{2}{27}x^7y^{11}\)
b) \(\left(-\dfrac{1}{2}x^2y\right)\left(-\dfrac{2}{3}x^2y^3\right)^3=\left(-\dfrac{1}{2}x^2y\right)\left(-\dfrac{8}{27}x^6y^9\right)=\dfrac{4}{27}x^8y^{10}\)
I . Trắc Nghiệm 1B . 2D . 3C . 5A II . Tự luận 2,a,Ta có: A+(x22y-2xy22+5xy+1)=-2x22y+xy22-xy-1 ⇔⇔ A=(-2x22y+xy22-xy-1) - (x22y-2xy22+5xy+1) =-2x22y+xy22-xy-1 - x22y+2xy22-5xy-1 =(-2x22y - x22y) + (xy22+ 2xy22) + (-xy - 5xy ) + (-1 - 1) = -3x22y + 3xy22 - 6xy - 2 b, thay x=1,y=2 vào đa thức A Ta có A= -3x22y + 3xy22 - 6xy - 2 = -3 . 122 . 2 + 3 .1 . 222 - 6 . 1 . 2 -2 = -6 + 12 - 12 - 2 = -8 3,Sắp xếp f(x) =9-x55+4x-2x33+x22-7x44 =9-x55-7x44-2x33+x22+4x g(x) = x55-9+2x22+7x44+2x33-3x =-9+x55+7x44+2x33+2x22-3x b,f(x) + g(x)=(9-x55-7x44-2x33+x22+4x) + (-9+x55+7x44+2x33+2x22-3x) =9-x55-7x44-2x33+x22+4x-9+x55+7x44+2x33+2x22-3x =(9-9)+(-x55+x55)+(-7x44+7x44)+(-2x33+2x33)+(x22+2x22)+(4x-3x) = 3x22 + x g(x)-f(x)=(-9+x55+7x44+2x33+2x22-3x) - (9-x55-7x44-2x33+x22+4x) =-9+x55+7x44+2x33+2x22-3x-9+x55+7x44+2x 33-x22-4x =(-9-9)+(x55+x55)+(7x44+7x44)+(2x33+2x33)+(2x22-x22)+(3x-4x) = -18 + 2x55 + 14x44 + 4x33 + x22 - x
1) \(P=\frac{16x^4y^6}{9}.\frac{9x^2y^4}{4}=4x^6y^{10}\), đa thức bậc 16, hệ số là 4, biến là \(x^6y^{10}\)
Tại x=-1, y=1 thay vào ta được: P=4
2) \(f\left(x\right)=x^5+x^3-4x^2-2x+5\)
\(g\left(x\right)=x^5-x^4+2x^2-3x+1\)
\(h\left(x\right)=f\left(x\right)+g\left(x\right)=2x^5-x^4+x^3-2x^2-5x+6\)
3) \(B=\frac{x^2+y^2+2+5}{x^2+y^2+2}=1+\frac{5}{x^2+y^2+2}\le1+\frac{5}{0+0+2}=\frac{7}{2}\)
Do B LN <=> \(\frac{5}{x^2+y^2+2}\)LN <=> \(x^2+y^2+2\)NN <=> x=y=0
4) Ta thấy 51x+26y=2000
CHÚ Ý: VP chẵn => VT chẵn mà 26y chẵn nên => 51x chẵn => x=2
Thay vào ta tìm được y=73 ( thỏa mãn là số nguyên tố)
vậy x=2, y=73
5) Nhận xét: VP \(\ge\)0 => VT \(\ge\)0 => \(y^2\le25\Rightarrow y=0,1,2,3,4,5\)
Mà VP chẵn => y lẻ => y=1,3,5
Thay y=1,3,5 vào ta được y=5, x=2009 là thỏa mãn
A=\( {1 \over 2}\)y.4x2y4+3x4y5
=2x2y5+3x4y5
ta có gt=>x=2;y=-1
thay vào đc A=56