Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(f\left(1\right)=a+b+c=\left(a+c\right)+b=2^{2006}+2^{2007}\)
\(f\left(-1\right)=a-b+c=\left(a+c\right)-b=2^{2006}-2^{2007}\)
\(A=f\left(1\right)+f\left(-1\right)=\left(2^{2006}+2^{2007}\right)+\left(2^{2006}-2^{2007}\right)=2.2^{2006}=2^{2007}\)
\(B=f\left(1\right)-f\left(-1\right)=\left(2^{2006}+2^{2007}\right)-\left(2^{2006}-2^{2007}\right)=2.2^{2007}=2^{2008}\)
1.Ta có (x-y)^2 >=0
(x-y)(x-y) >=0
x^2+y^2-2xy>=0
(x^2+y^2+2xy)-4xy>=0
(x+y)^2 >=4xy mà x+y=1
4xy <=1
xy<=1/4
dấu = xảy ra <=> (x-y)^2=0
<=>x-y=0 <=> x=y mà x+y=1
<=> x=y=0,5
GTLn của bt là 1/4 tại x=y=0,5
2. (* chú ý nè : Tổng các hệ số của 1 đa thức sau khi bỏ dấu ngoặc là giá trị của đa thức đó tại biến =0)
Bài này bạn chỉ cần thay x=1 vào rồi tính thui
Đáp số là: 8^2019
3.f(-2)=4a-2b+c
f(3)=9a+3b+c
=> f(-2)+f(3) =13a+b+2c=0
=> f(-2)=-f(3)
=> f(-2). f(3)= -f(3) .f(3)=-[f(3)]^2
Mà -[f(3)]^2<=0 với mọi a,b,c
=> f(-2). f(3)<=0
T i ck cho mình ủng hộ nha
ta có f(2)=0 =>4a2+2b+c=0 => 4a2+2b=-c (1)
f(-2)=0 => 4a2- 2b+c=0 => 4a2-2b=-c (2)
từ (1), (2) => a=0, b=1, c=-2
Ta có : \(f\left(-1\right)=\left(-1\right)^2.a+\left(-1\right).b+c=a-b+c\)
Do a + c = b + 2018 , suy ra
\(f\left(-1\right)=b+2018-b=2018\)
Vậy ............