\(f\left(x\right)=ax^2+bx+c\) và \(f\left(1\right)=f\lef...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Ta có \(f\left(1\right)=a+b+c\)\(f\left(-1\right)=a-b+c\)

\(f\left(1\right)=f\left(-1\right)\) nên \(a+b+c=a-b+c\Rightarrow b=0\)

\(f\left(x\right)=ax^2+bx+c=ax^2+c\)

\(f\left(-x\right)=ax^2-bx+c=ax^2+c\)

Vậy \(f\left(x\right)=f\left(-x\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2017

Lời giải:

Ta có thể viết dạng của $f(x)$ như sau:

\(f(x)=(x-1)(x-2)(x-3)(x-t)+g(x)\)

Trong đó, \(t\) là một số bất kỳ nào đó và \(g(x)\) là đa thức có bậc nhỏ hơn hoặc bằng $3$

Giả sử \(g(x)=mx^3+nx^2+px\)

\(\left\{\begin{matrix} f(1)=g(1)=m+n+p=10\\ f(2)=g(2)=8m+4n+2p=20\\ f(3)=g(3)=27m+9n+3p=30\end{matrix}\right.\)

Giải hệ trên thu được \(m=0,n=0,p=10\)

Như vậy \(f(x)=(x-1)(x-2)(x-3)(x-t)+10x\)

Do đó \(\left\{\begin{matrix} f(12)=990(12-t)+120=12000-990t\\ f(-8)=-990(-8-t)-80=7840+990t\end{matrix}\right.\)

\(\Rightarrow \frac{f(12)+f(-8)}{10}+26=\frac{12000+7840}{10}+26=2010\) (đpcm)

24 tháng 3 2020

Ta có: \(f\left(1\right)=a+b+c=\left(a+c\right)+b=2^{2006}+2^{2007}\)

\(f\left(-1\right)=a-b+c=\left(a+c\right)-b=2^{2006}-2^{2007}\)

\(A=f\left(1\right)+f\left(-1\right)=\left(2^{2006}+2^{2007}\right)+\left(2^{2006}-2^{2007}\right)=2.2^{2006}=2^{2007}\)

\(B=f\left(1\right)-f\left(-1\right)=\left(2^{2006}+2^{2007}\right)-\left(2^{2006}-2^{2007}\right)=2.2^{2007}=2^{2008}\)

AH
Akai Haruma
Giáo viên
5 tháng 7 2020

Lời giải:

Ta có:

$f(-1)=a-b+c$

$f(2)=4a+2b+c$

Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$

$\Rightarrow f(-1)=-f(2)$

$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)

29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha

30 tháng 5 2020

Em cảm ơn cj

3 tháng 4 2017

\(\left\{{}\begin{matrix}f\left(0\right)=2014\Rightarrow c=2014\left(1\right)\\f\left(1\right)=2015\Rightarrow a+b+c=2015\left(2\right)\\f\left(-1\right)=2017\Rightarrow a-b+c=2017\left(3\right)\end{matrix}\right.\)

\(f\left(-2\right)=4a-2b+c\)

Lấy (3) nhân 3 công (2) trừ (1) nhân 2

\(f\left(-2\right)=4a-2b+c=3.2017+2015-3.2014\)

\(f\left(-2\right)=3\left(2017-2014\right)+2015=2024\)

13 tháng 4 2019

Vì f(x) có 1 nghiệm là x=-3 nên ta có: \(f\left(-3\right)=9-3a+b=0\Rightarrow-3a+b=-9\)(1)

\(f\left(2\right)=4+2a+b=5\Rightarrow2a+b=1\)(2) 

Từ (1) và (2)\(\Rightarrow-3a+b-2a-b=-9-1\Rightarrow-5a=-10\Rightarrow a=2\)

Thay a vào tính b rồi tính