K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2020

undefinedXài cái này gõ bài đi bạn, thề như này hiểu chết liền á :(

NV
6 tháng 11 2019

a/ \(\frac{A^4_n}{A_{n+1}^3-C_n^{n-4}}=\frac{24}{23}\Rightarrow n=5\)

Khai triển \(\left(2-3x^2+x^3\right)^5\)

\(\left\{{}\begin{matrix}k_0+k_2+k_3=5\\2k_2+3k_3=9\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_2;k_3\right)=\left(1;3;1\right);\left(2;0;3\right)\)

Hệ số của số hạng chứa \(x^9\):

\(\frac{5!}{1!.3!.1!}.2^1.\left(-3\right)^3+\frac{5!}{2!.3!}.2^2.\left(-3\right)^0=-1040\)

b/ SHTQ của khai triển: \(\left(1+2x\right)^n\) là: \(C_n^k2^kx^k\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển tổng quát là \(C_n^32^3\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển của \(f\left(x\right)\): \(2^3.\sum\limits^{22}_{n=3}C_n^3\)

Tính tổng \(C_3^3+C_4^3+C_5^3+...+C_{22}^3\)

\(=C_4^4+C_4^3+C_5^3+...+C_{22}^3\)

\(=C_5^4+C_5^3+...+C_{22}^3\)

\(=C_6^4+C_6^3+...+C_{22}^3=...=C_{23}^4\)

Vậy \(2^3\sum\limits^{22}_{n=3}C_n^3=2^3.C_{23}^4\)

10 tháng 3 2020

Đặt \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{n\left(n+1\right)}=A\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)

\(\Leftrightarrow A=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)

NV
23 tháng 4 2019

Xét khai triển:

\(\left(x+1\right)^n=C_n^0+C_n^1x+C_n^2x^n+C_n^3x^3+...+C_n^nx^n\)

Đạo hàm 2 vế:

\(n\left(x+1\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)

Thay \(x=1\) vào ta được:

\(n.2^{n-1}=C_n^1+2C_n^2+3C_n^3+...+nC_n^2=256n\)

\(\Rightarrow2^{n-1}=256=2^8\Rightarrow n=9\)

Câu 2:

\(\left(x-2\right)^{80}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{80}x^{80}\)

Đạo hàm 2 vế:

\(80\left(x-2\right)^{79}=a_1+2a_2x+3a_3x^2+...+80a_{80}x^{79}\)

Thay \(x=1\) ta được:

\(80\left(1-2\right)^{79}=a_1+2a_2+3a_3+...+80a_{80}\)

\(\Rightarrow S=80.\left(-1\right)^{79}=-80\)

23 tháng 4 2019

cảm ơn anh

NV
24 tháng 3 2021

a. Chắc đề là: \(\lim\dfrac{2-5^{n-2}}{3^n+2.5^n}=\lim\dfrac{2\left(\dfrac{1}{5}\right)^{n-2}-1}{9\left(\dfrac{3}{5}\right)^{n-2}+50}=-\dfrac{1}{50}\)

b. \(=\lim\dfrac{2\left(\dfrac{1}{5}\right)^n-25}{\left(\dfrac{3}{5}\right)^n-2}=\dfrac{25}{2}\)

2.

Đặt \(f\left(x\right)=x^4+x^3-3x^2+x+1\)

Hàm f(x) liên tục trên R

\(f\left(0\right)=1>0\) ; \(f\left(-1\right)=-3< 0\)

\(\Rightarrow f\left(0\right).f\left(-1\right)< 0\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc khoảng \(\left(-1;0\right)\)

Hay pt đã cho luôn có ít nhất 1 nghiệm âm lớn hơn -1

NV
24 tháng 3 2021

3.

Ta có: M là trung điểm AD, N là trung điểm SD

\(\Rightarrow\) MN là đường trung bình tam giác SAD

\(\Rightarrow MN||SA\Rightarrow\left(MN,SC\right)=\left(SA,SC\right)\)

Ta có: \(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(SA=SC=a\)

\(\Rightarrow SA^2+SC^2=AC^2\Rightarrow\Delta SAC\) vuông tại S hay \(SA\perp SC\)

\(\Rightarrow\) Góc giữa MN và SC bằng 90 độ

NV
5 tháng 11 2019

\(\left(1+x\right)^n=\sum\limits^n_{k=0}C_n^kx^k\)

Hệ số của 2 số hạng liên tiếp là \(C_n^k\)\(C_n^{k+1}\)

\(\Rightarrow7C_n^k=5C_n^{k+1}\Leftrightarrow\frac{7n!}{k!.\left(n-k\right)!}=\frac{5n!}{\left(k+1\right)!\left(n-k-1\right)!}\)

\(\Leftrightarrow\frac{7}{n-k}=\frac{5}{k+1}\Leftrightarrow7k+7=5n-5k\)

\(\Leftrightarrow5n=12k+7\Rightarrow n=\frac{12k+7}{5}\)

\(\Rightarrow n_{min}=11\) khi \(k=4\)

2/ \(\left(x-2\right)^{100}=\sum\limits^{100}_{k=0}C_{100}^kx^k.\left(-2\right)^{100-k}\)

\(a_{97}\) là hệ số của \(x^{97}\Rightarrow k=97\)

Hệ số là \(C_{100}^{97}.\left(-2\right)^3\)

Bài 1: 1,giai pt: cos2x+sin2x-cosx-(1-sinx)tanx=0 2,cho h/s y=(x+3)/(x+2) có đt(c) và (d):y=-x+m.tim m để (d) cắt (c) tại 2 điểm phân biệt A,B sao cho góc AOB nhọn Bài 2:Cho tam giác ABC,các điểm M,N lần lượt di chuyển trên các đường thẳng AB và AC sao cho MN//BC.gọi P=BN giao CM.đường tròn ngoai tiếp các tam giác BMP và CNP cắt nhau tại 2 điểm phân biệt P và Q.cmr: 1,góc BAQ=góc CAP 2,Điểm Q di chyển trên 1 đường thẳng cố...
Đọc tiếp

Bài 1:

1,giai pt: cos2x+sin2x-cosx-(1-sinx)tanx=0

2,cho h/s y=(x+3)/(x+2) có đt(c) và (d):y=-x+m.tim m để (d) cắt (c) tại 2 điểm phân biệt A,B sao cho góc AOB nhọn

Bài 2:Cho tam giác ABC,các điểm M,N lần lượt di chuyển trên các đường thẳng AB và AC sao cho MN//BC.gọi P=BN giao CM.đường tròn ngoai tiếp các tam giác BMP và CNP cắt nhau tại 2 điểm phân biệt P và Q.cmr:

1,góc BAQ=góc CAP

2,Điểm Q di chyển trên 1 đường thẳng cố định

Bai 3:Tìm tất cả các căp số thực(a:b) có tính chất:Trong (0xy),parabol y=x2-2bx +(a+1) cắt 0x tại 2 điểm phân biệt A,B cắt 0y tại C(C#0) sao cho I(a,b) là tâm đường tròn ngoại tiếp tam giác ABC

Bài 4:

1,cho x,y>0 tm:log3(1-xy)/(x+2y) = 3xy +x +2y -4.tìn gtnn của Q=x+y

2,cho h/s f(x)=ln2019 – ln( (x+1)/x).tính S=f’(1) +f’(2) +f’(3) +…+f’(2019)

Bai 5:cho(xn): x1=2/3

Xn+1=xn/(2(2n+1)xn +1), mọi n>=1

1,đặt Vn=1/xn. cmr Vn+1=Vn+2(2n+1),mọi n>=1.tìm Vn

2,đặt Yn=x1+x2+x3+….+xn.Tính Lim yn

Bài 6: cho tam giác ABC vuông cân tại B.M là trung điểm AB.gọi I là điểm di chuyển trên đường thẳng MC sao cho|2 vecto IM+ vecto IC- vecto IA| đạt gtnn.Tính tỉ số AC/AI

0
18 tháng 3 2017

Chọn D

Đạo hàm hai vế f(x) 

 

Số hạng tổng quát thứ k + 1 trong khai triển thành đa thức của