Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(f\left(5\right)=125a+25b+5c+d\)
\(f\left(4\right)=64a+16b+4c+d\)
\(f\left(7\right)=343a+49b+7c+d\)
\(f\left(2\right)=8a+4b+2c+d\)
Xét:
\(f\left(5\right)-f\left(4\right)=125a+25b+5c+d-64a-16b-4c-d\)
\(=61a+9b+c=2019\)
Khi đó:
\(f\left(7\right)-f\left(2\right)=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c=5\left(61a+9b+c\right)+30=5\cdot2019+30⋮5\)
Vậy ta có đpcm
Lời giải:
Ta có:
\(f(5)-f(4)=2012\)
\(\Leftrightarrow (a.5^3+b.5^2+c.5+d)-(a.4^3+b.4^2+c.4+d)=2012\)
\(\Leftrightarrow 61a+9b+c=2012\)
Do đó:
\(f(7)-f(2)=(a.7^3+b.7^2+c.7+d)-(a.2^3+b.2^2+c.2+d)\)
\(=335a+45b+5c=30a+5(61a+9b+c)\)
\(=30a+5.2012=5(6a+2012)\vdots 5\)
Mà \(f(7)-f(2)=30a+5.2012>5, \forall a\in\mathbb{Z}^+\). Do đó $f(7)-f(2)$ là hợp số (đpcm)
f(0) ⋮ 7 => e ⋮ 7
=> g(x) = ax4 + bx3 + cx2 + dx ⋮ 7 ∀ x nguyên
g(1) = a + b + c + d ⋮ 7
g(-1) = a - b + c - d ⋮ 7
=> \(\left\{{}\begin{matrix}\left(a+b+c+d\right)+\left(a-b+c-d\right)⋮7\\\left(a+b+c+d\right)-\left(a-b+c-d\right)⋮7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2\left(a+c\right)⋮7\\2\left(b+d\right)⋮7\end{matrix}\right.\)
Mà 2 không chia hết cho 7 => \(\left\{{}\begin{matrix}a+c⋮7\\b+d⋮7\end{matrix}\right.\) (1)
g(2) = 16a + 8b + 4c + 2d ⋮ 7
g(-2) = 16a - 8b + 4c - 2d ⋮ 7
=> \(\left\{{}\begin{matrix}\left(16a+8b+4c+2d\right)+\left(16a-8b+4c-2d\right)⋮7\\\left(16a+8b+4c+2d\right)-\left(16a-8b+4c-2d\right)⋮7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}8\left(4a+c\right)⋮7\\4\left(4b+d\right)⋮7\end{matrix}\right.\)
Mà 8 và 4 không chia hết cho 7
=> \(\left\{{}\begin{matrix}4a+c⋮7\\4b+d⋮7\end{matrix}\right.\) (2)
Từ (1) và (2)
=> \(\left\{{}\begin{matrix}\left(4a+c\right)-\left(a+c\right)⋮7\\\left(4b+d\right)-\left(b+d\right)⋮7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3a⋮7\\3b⋮7\end{matrix}\right.\)
Mà 3 không chia hết cho 7 => \(\left\{{}\begin{matrix}a⋮7\\b⋮7\end{matrix}\right.\)
Lại có: \(\left\{{}\begin{matrix}a+c⋮7\\b+d⋮7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}c⋮7\\d⋮7\end{matrix}\right.\)
Vậy bài toán đã được chứng minh
tìm x từ 2x-4 rồi thay vào x^2-ax+2
đặt x^2 -ax+2 bằng 0 sau đó tìm dc a
hihi chưa học đa thức