Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a(x)=x^3+3x^2+5x-18
b(x)=-x^3-3x^2+2x-2
b: m(x)=a(x)+b(x)
=x^3+3x^2+5x-18-x^3-3x^2+2x-2
=7x-20
c: m(x)=0
=>7x-20=0
=>x=20/7
a) Thu gọn và sắp xếp:
\(A\left(x\right)=\left(3x^6-3x^6\right)-x^4+\left(3x^3-3x^3+x^3\right)+5=-x^4+x^3+5\)
\(B\left(x\right)=2x^5+\left(x^4-x^4\right)-2x^3+x-1=2x^5-2x^3+x-1\)
b) \(A\left(x\right)+B\left(x\right)=-x^4+x^3+5+2x^5-2x^3+x-1=2x^5-x^4-x^3+x+4\)
\(A\left(x\right)-B\left(x\right)=-x^4+x^3+5-\left(2x^5-2x^3+x-1\right)=-2x^5-x^4+3x^3-x+6\)
a, \(A\left(x\right)=-x^4+x^3+5;B\left(x\right)=2x^5-2x^3+x-1\)
b, \(A\left(x\right)+B\left(x\right)=2x^5-x^4-x^3+x+4\)
\(A\left(x\right)-B\left(x\right)=-2x^5-x^4+3x^3-x+6\)
a) \(P\left(x\right)=3x^4+x^2-3x^4+5\\ =x^2+5\)
b) \(P\left(0\right)=0^2+5=5\\ P\left(-3\right)=\left(-3\right)^2+5=-9+5=4\)
c) Ta có: x2 ≥ 0 với mọi x
Nên x2 + 5 > 5 hay f(x) > 5
Vậy đa thức P(x) không có nghiệm
a) \(P\left(x\right)=x^2+5\)
b) \(P\left(0\right)=0^2+5=5\)
\(P\left(-3\right)=\left(-3\right)^2+5=14\)
c) Để P(x) có nghiệm
<=> \(P\left(x\right)=0\)
<=> \(x^2+5=0\)
<=> \(x^2=-5\) (vô lívì \(x^2\ge0\left(\forall x\right)\))
=> P(x) không có nghiệm
Câu 1:
a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)
c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)
\(P\left(0\right)=0\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
a) Ta có:
\(P\left(x\right)=5x^3+2x^4-x^2+3x^2-3x^3-x^4+1-4x^3\)
\(\Rightarrow P\left(x\right)=2x^4-x^4+5x^3-3x^3-4x^3-x^2+3x^2+1\)
\(\Rightarrow P\left(x\right)=x^4-2x^3+2x^2+1\)
Câu 3:
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
hay ΔDFC cân tại D
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a: F(x)=3x^3-2x^2+5x-7
G(x)=3x^3-2x^2+5x+7x^2+3=3x^3+5x^2+5x+3
Bậc của F(x),G(x) đều là 3
b: N(x)=G(x)-F(x)
\(=3x^3+5x^2+5x+3-3x^3+2x^2-5x+7=7x^2+10\)
M(x)=2F(x)+G(x)
\(=6x^3-4x^2+10x-14+3x^3+5x^2+5x+3\)
\(=9x^3+x^2+15x-11\)
c: x^2-3x=0
=>x=0 hoặc x=3
\(M\left(0\right)=9\cdot0^3+0^2+15\cdot0-11=-11\)
\(M\left(3\right)=9\cdot3^3+3^2+15\cdot3-11=286\)
d: N(x)=7x^2+10>=10
Dấu = xảy ra khi x=0
a) \(P=\left(-\frac{2}{3}x^3y^2\right).\left(\frac{3}{5}x^2y^5\right)\)
\(P=\left(-\frac{2}{3}\cdot\frac{3}{5}\right).\left(x^3\cdot x^2\right)\cdot\left(y^2\cdot y^5\right)\)
\(P=-\frac{2}{5}x^5y^7\)
Hệ số là \(-\frac{2}{5}\); Phần biến là \(x^5y^7\)
Bậc của đơn thức là 12
b) Thay \(x=\frac{5}{2}\)vào đơn thức M(x), ta được :
\(2\cdot\left(\frac{5}{2}\right)^2-7\cdot\frac{5}{2}+5=0\)
\(\Leftrightarrow\frac{25}{2}-\frac{35}{2}+5=0\)
\(\Leftrightarrow-5+5=0\)
\(\Leftrightarrow0=0\)(TM)
Vậy \(x=\frac{5}{2}\)là nghiệm của đơn thức M(x) (ĐPCM)
Thay \(x=-1\)vào đơn thức M(x), ta được :
\(2\cdot\left(-1\right)^2-7\cdot\left(-1\right)+5=0\)
\(\Leftrightarrow2+7+5=0\)
\(\Leftrightarrow14=0\)(KTM)
Vậy \(x=-1\)không phải là nghiệm của đơn thức M(x) (ĐPCM)