Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Ta chia làm 2 bài:
*C/m: Khi 6a, 2b, a+b+c và d là số nguyên thì đa thức trên có giá trị nguyên với mọi x nguyên.
- 6a nguyên \(\Rightarrow\)a nguyên.
- 2b nguyên \(\Rightarrow\)b nguyên.
- a+b+c nguyên \(\Rightarrow\)c nguyên.
\(\Rightarrow\)đpcm.
*C/m: Khi đa thức trên có giá trị nguyên với mọi x nguyên thì 6a, 2b, a+b+c và d là số nguyên.
\(f\left(0\right)=d\) nguyên.
\(f\left(1\right)=a+b+c+d\) nguyên \(\Rightarrow\) a+b+c nguyên.
\(f\left(2\right)=8a+4b+2c+d\) nguyên \(\Rightarrow8a+4b+2c\) nguyên.
\(\Rightarrow4a+2b+c\) nguyên
\(\Rightarrow4a+2b+c-\left(a+b+c\right)\) nguyên.
\(\Rightarrow3a+b\) nguyên.
\(f\left(3\right)=27a+9b+3c+d\) nguyên \(\Rightarrow27a+9b+3c\) nguyên
\(\Rightarrow9a+3b+c\) nguyên
\(9a+3b+c-\left(a+b+c\right)\) nguyên.
\(\Rightarrow8a+2b\) nguyên \(\Rightarrow4a+b\) nguyên
\(\Rightarrow a,b\) nguyên.
Bài 2:
- Thay x=0 vào P(x) ta được:
P(0)=d => d là số lẻ.
- Thay x=1 vào P(x) ta được:
P(1)=a+b+c+d =>a+b+c+d là số lẻ mà d lẻ nên a+b+c là số chẵn.
- Gọi e là nghiệm của P(x), thay e vào P(x) ta được:
P(e)=ae3+be2+ce+d=0
=>ae3+be2+ce=-d
=>e(ae2+be+c)=-d
=>e=\(\dfrac{-d}{ae^2+be+c}\).
Ta thấy: -d là số lẻ, ae2+be+c là số chẵn nên -d không thể chia hết cho
ae2+be+c.
- Vậy P(x) không thể có nghiệm là số nguyên.
\(M_{\left(x\right)}=a\cdot x^3+b\cdot x^2+c\cdot x+d\\ M_{\left(0\right)}=d\)
Mà M(x) nguyên nên d nguyên
\(M_{\left(1\right)}=a+b+c+d\) mà d nguyên nên a+b+c nguyên
\(M_{\left(2\right)}=8a+4b+2c+d\)mà d nguyên, a+b+c nguyên nên 6a+2b nguyên
\(M_{\left(-1\right)}=-a+b-c+d\)mà d nguyên, a+b+c nguyên nên b nguyên
Vì b nguyên mà 6a+2b nguyên nên 6a nguyên, 2b nguyên
\(P\left(0\right)=d\inℤ\left(1\right)\)
\(P\left(1\right)=a+b+c+d\inℤ\left(2\right)\)
\(P\left(-1\right)=-a+b-c+d\inℤ\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow2b\inℤ,2a+2c\inℤ\)
\(P\left(2\right)=8a+4b+2c+d=6a+4b+2a+2c+d\inℤ\)
\(\Rightarrow6a\inℤ\)
Vậy \(6a,2b,a+b+c\) và \(d\)là số nguyên
Lời giải:
$P(0)=d$ lẻ
$P(1)=a+b+c+d$ lẻ, mà $d$ lẻ nên $a+b+c$ chẵn. Do đó 3 số này có thể nhận giá trị lẻ, lẻ, chẵn hoặc chẵn, chẵn, chẵn.
Giả sử $P(x)$ có nghiệm nguyên $m$. Khi đó:
$P(m)=am^3+bm^2+cm+d$
Nếu $m$ chẵn thì $am^3+bm^2+cm+d$ lẻ cho $d$ lẻ nên $P(m)\neq 0$
Nếu $m$ lẻ: Do $a,b,c$ nhận giá trị lẻ, chẵn, chẵn hoặc chẵn, chẵn, chẵn nên $am^3+bm^2+cm$ đều chẵn. Kéo theo $P(m)=am^3+bm^2+cm+d$ lẻ
$\Rightarrow P(m)\neq 0$
Tóm lại $P(m)\neq 0$
$\Rightarrow x=m$ không là nghiệm của $P(x)$. Do đó điều giả sử là sai.
Ta có đpcm.
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.