Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho \(f\left(x\right)=ax^3+bx^2+cx+d\)biết \(a+c=b+d\).Chứng minh \(x=-1\)là nghiệm của đa thức f(x)
a) Giải:
Ta có:
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)
\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)
\(=13a+b+2c=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)
\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)
Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)
b) Sửa đề:
Biết \(5a+b+2c=0\)
Giải:
Ta có:
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)
\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)
\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)
\(=5a+b+2c=0\)
\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)
\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)
Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)
Ta có P(-1) = a - b + c = 0
Vậy x = -1 là nghiệm của đa thức P(x)
Cho : a + b + c = 0; f(x) = ax2 + bx + c
Ta có : f(1) = a . 12 + b . 1 + c
= a + b + c = 0
Vậy x = 1 là nghiệm của đa thức f(x)
Cho : a - b + c = 0; h(x) = ax2 + bx + c
Ta có : h(-1) = a . (-1)2 + b . (-1) + c
= a - b + c = 0
Vậy x = -1 là nghiệm của đa thức h(x)
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
Ta có:
A(-1)= a(-1)2+b(-1)+c
=a.1+(-b)+c
=a-b+c
Mà theo đề bài là a-b+c=0
=>A(-1)=0
Vậy x= -1 là nghiệm của A(x)
Ta có: \(A_{\left(x\right)}=ax^2+bx+c\)
\(\Rightarrow A\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\)
\(\Rightarrow A\left(-1\right)=a-b+c\)
Mà \(a-b+c=0\) (theo giả thiết)
Nên \(A\left(-1\right)=0\)
\(\Rightarrow x=-1\) là 1 nghiệm của đa thức \(A_{\left(x\right)}=ax^2+bx+c\)