\(ax^2+bx+c\) và \(a-b+c=0\) .Chứng minh x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Ta có:

A(-1)= a(-1)2+b(-1)+c

=a.1+(-b)+c

=a-b+c

Mà theo đề bài là a-b+c=0

=>A(-1)=0

Vậy x= -1 là nghiệm của A(x)

23 tháng 4 2017

Ta có: \(A_{\left(x\right)}=ax^2+bx+c\)

\(\Rightarrow A\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\)

\(\Rightarrow A\left(-1\right)=a-b+c\)

\(a-b+c=0\) (theo giả thiết)

Nên \(A\left(-1\right)=0\)

\(\Rightarrow x=-1\) là 1 nghiệm của đa thức \(A_{\left(x\right)}=ax^2+bx+c\)

20 tháng 4 2019

Cần chứng tỏ rằng f(-1) = 0. Thật vậy : f(-1) = a.(-1)3  + b.(-1)2 + c.(-1) + d = a(-1) + b.1 - c +d = - a + b - c + d = b + d - a - c

Mà a + c = b + d <=> b + d = a + c => (b + d) - (a + c) = 0 => b + d - a - c = 0

Vậy -1 là một nghiệm của đa thức

5 tháng 4 2017

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)

12 tháng 4 2018

Ta có P(-1) = a - b + c = 0

Vậy x = -1 là nghiệm của đa thức P(x)

13 tháng 5 2017

Cho : a + b + c = 0; f(x) = ax2 + bx + c

Ta có : f(1) = a . 12 + b . 1 + c

= a + b + c = 0

Vậy x = 1 là nghiệm của đa thức f(x)

13 tháng 5 2017

Cho : a - b + c = 0; h(x) = ax2 + bx + c

Ta có : h(-1) = a . (-1)2 + b . (-1) + c

= a - b + c = 0

Vậy x = -1 là nghiệm của đa thức h(x)

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!